Module Handbook

Physics Undergraduate Study Program

Organized by :

Faculty Curriculum Team Physics Department Curriculum Team

Faculty Of Mathematics And Natural Sciences

Universitas Gadjah Mada

2021

Table of Contents

1. STUDY PROGRAM IDENTITY	1
2. VISION, MISSION, OBJECTIVES, STRATEGY AND UNIVERSITY VALUE	1
3. PROGRAM LEARNING OUTCOMES (PLOS)	2
4. LIST OF COURSES	
4.1 List of Compulsory Courses	9
4.2 List of Elective Courses	12
5. SEMESTER LEARNING ACTIVITY PLANS (SLAP)	15
1. UNU 100X - Religion	15
2. MFF 1011 - General Physics 1	19
3. MFF 1061 - Measurement Technique in Physics	
4. MFF 1020 - Mathematical Physics I	26
5. MFF 1013 - Laboratory for General Physics I	
6. MFF 1012 - General Physics II	
7. MFF 1024 - Numerical Method	
8. MFF 1850 - Electronics	41
9. MFF 1014 - Laboratory for General Physics II	44
10. MFF 1401 - Mechanics I	48
11. MFF 1053 - Thermodynamics	52
12. MFF 1405 - Waves	56
13. MFF 1021 - Mathematical Physics II	59
14. MFF 2415 - Electromagnetics I	63
15. MFF 2027 - Computational Physics	67
16. MFF 2851 - Electronics Practicum**)	72
17. MFF 2028 - Numerical Method Practicum**)	75
18. MFF 2034 - Quantum Physics I	79
19. MFF 2024 - Mathematical Physics III	83
20. MFF 2402 - Mechanics II	86
21. MFF 2031 - Relativity Theory	
22. MFF 2051 - Statistical Physics	
23. MFF 2062 - Lab Assignments**)	
24. MFF 2310 - Atomic and Molecular Physics	

25. MFF 2410 - Electromagnetics II	103
26. MFF 2033 - Modern of Physics Practicum**)	107
27. MFF 2035 - Quantum Physics II	111
28. MFF 2601 - Solid State Physics I	114
29. MFF 2205 - Nuclear and Particle Physics I	117
30. MFF 2313 - Atomic and Molecular Physics Experiments	121
31. MFF 2060 - Research Methodology and Scientific Communication**)	125
32. MFF 3015 - Philosophy of Physics	128
33. MFF 3411 - Modern of Optics	130
34. MFF 3206 - Nuclear and Particle Physics II	133
35. MFF 3608 - Solid of Physics II	136
36. MFF 3204 - Nuclear Physics Laboratory**)	139
37. MFF 3602 - Solid State Physics Laboratory**)	143
38. MFG 1101 - Introduction to Geophysics	145
39. MFF 2061 - Metrology and Calibration of Physics	148
40. MFF 2071 - Instrumentation System	150
41 . MFF 2853 - Sensor System	152
42. MFF 2873 - Image of Physics	154
43. MFF 2953 - Celestial Mechanics	156
44. MFF 2029 - Mathematics Theoretical of Physics I	158
45. MFF 3053 - Physics of Complex and Nonlinear Systems	161
46. MFF 3291 - Nuclear and Particle Detection Method	164
47. MFF 3423 - Introduction to Laser of Physics	166
48. MFF 3701 - Medical of Physics	168
49. MFF 3843 - Microwave	170
50. MFF 3871 - Tomography of Physics	172
51. MFF 3891 - Environmental of Physics	174
52. MFF 4033 - Quantum Mechanics	176
53. MFF 4611 - Liquid Crystal of Physics and Polymers	179
54. MFF 4893 - Introduction to Econophysics	181
55. MFF 4043 - Introduction to Astrophysics and Cosmology	184
56 Internship	187
57. MFF 1064 - Graphical Methods in Physics	189

58. MFF 1528 - Simulation and Visualization in of Physics	192
59. MFF 2070 - Microcontroller and Interfacing	195
60. MFF 2322 - Atomic and Molecular Detection Method	
61. MFF 3002 - Science and Religion	
62. MFF 3024 - Capita Selecta Computational Physics	
63. MFF 3030 - Mathematics Theoretical of Physics II	
64. MFF 3114 - Introduction to Particle of Physics	
65. MFF 3284 - Reactor of Physics	211
66. MFF 3288 - Radiation Protection	214
67. MFF 3436 - Modern Acoustics	218
68. MFF 3680 - Introduction to Nanoscience	221
69. MFF 3810 - Capita Selecta in Material Physics	
70. MFF 3812 - Materials Analysis Method	
71. MFF 3820 - Computational Material of Physics	
72. MFF 3872 - Biophysics	232
73. MFF 38776 - Radiographic of Physics	234

CURRICULUM OF THE PHYSICS STUDY PROGRAM, THE FACULTY OF MATHEMATICS AND NATURAL SCIENCES

1. STUDY PROGRAM IDENTITY

Study Program	Physics
Education Level	Bachelor Program (S1)
Department	Physics
Faculty	Faculty Of Mathematics and Natural Sciences
University	Universitas Gadjah Mada
Establishment Number	22/DIKTI/Kep/1985
Date of Establishment	May 1 st , 1985
Month & Year Started	September 1 st , 1956 as a Physics major or May 1 st , 1985
	as a Physics study program
Final Accreditation Rating (Score).	A
Decree Number BAN-PT	1226/SK/BAN-PT/Akred/S/IV/2019
Address	Department of Physics, FMIPA UGM, North Sekip,
	Bulaksumur BLS 21, Yogyakarta 55281
Phone number	(0274) 545 185
Fox Number	(0274) 545 495
rax inumper	(0274) 545 185
Homepage URI	http://fisika.fmipa.ugm.ac.id/
	nup//nonca.nnipa.ugin.uo.iu/

2. VISION, MISSION, OBJECTIVES, STRATEGY AND UNIVERSITY VALUE

The vision of the BP-Phys is that by 2037 it will become an undergraduate Physics study program that excels nationally and is well known internationally in the fields of education and teaching for the glory and welfare of Indonesian people and mankind in general. This vision was later revealed to be the mission of the study program as follows:

 Organizing education and teaching programs in Physics based on a quality management system that meets national and international standards which produce graduates with a bachelor's degree (S1) in Physics who are competent, active in community development efforts, creating prosperity and improving community civilization, and able to continue to education level higher (S2 and S3).

- 2. Organizing education and teaching of Physics that is oriented to the development of superior science and technology that is beneficial to human civilization.
- 3. Organizing integrated physics education and teaching in various community service activities to help achieve the nation's welfare.

The vision and mission of the undergraduate physics study program (S1) is in line with the vision and mission of FMIPA and the Physics Department, which is then carried out with the educational objectives of the physics undergraduate study program (PEO, Program Educational Objectives) as follows:

PEO-1 Produce Bachelors (S1) in the field of Physics who believe and fear God Almighty, have high integrity and personality, are open and responsive to changes, scientific advances and problems faced by society, especially those related to their fields of expertise, and international quality.

PEO-2 To produce undergraduates (S1) in Physics who have superior abilities to be able to study at an advanced level (S2 and S3) at national and international levels.

PEO-3 To produce knowledgeable and skilled personnel for centers of excellence in education, research and community service based on physics and its applications which are known and recognized at the national and international levels.

PEO-4 To produce graduates who are competent, qualified, with national and international insight, and able to work together, to encourage the growth of community welfare and the advancement of world civilization.

3. PROGRAM LEARNING OUTCOMES (PLOS)

To be able to form the expected graduate profile, it is necessary to have Learning Outcomes (PLO) based on general and specific descriptions of level 6 educational qualifications in the Indonesian National Qualifications Framework (IQF). In general, each level of qualification at the IQF includes the process of building the character and personality of Indonesian people, namely:

- 1. Fear God Almighty.
- 2. Have good morals, ethics, and personality in completing their duties.
- 3. To act as citizens who are proud and love their homeland and support world peace.
- 4. Able to work together and have high social sensitivity and concern for society and the environment.
- 5. Appreciate the diversity of cultures, views, beliefs, and religions as well as the original opinions/findings of others.
- 6. Uphold law enforcement and have the spirit to put the interests of the nation and the wider community first.

Meanwhile, specifically, the level 6 qualification level at the IQF includes the following graduate abilities:

- 1. Able to take advantage of science and technology in their field of expertise, and able to adapt to situations faced in solving problems.
- 2. Mastering the theoretical concepts of certain fields of knowledge in general and the theoretical concepts of specific sections in that field of knowledge in depth, and able to formulate procedural problem solving.
- 3. Able to make strategic decisions based on analysis of information and data, and provide guidance in choosing various alternative solutions.
- 4. Responsible for their own work and can be given responsibility for the achievement of the organization's work.

The description of the qualification level of the IQF level 6 above was later revealed to be more specific for Bachelor Program in Physics (BP-Phys) graduates by the Physical Society of Indonesia (PSI), as follows:

1. Ability in the field of work:

- a). Able to formulate physical symptoms and problems through analysis based on observations and experiments. (IQF 6.1)
- b). Able to produce mathematical or physical models following the hypothesis or forecast of the impact of the phenomenon that is the subject of discussion. (IQF 6.2)
- c). Able to analyze various alternative solutions to physical problems and conclude them for making the right decisions. (IQF 6.3)
- d). Able to predict the potential application of physical behavior in technology. (IQF 6.4)
- e). Able to disseminate the study results of problems and physical behavior from simple symptoms in reports or working papers according to standard scientific rules. (IQF 6.5)
- 2. Mastery of knowledge:
 - a). Mastering the theoretical concepts and basic principles of classical and quantum physics. (IQF 6.6)
 - b). Mastering the principles and applications of mathematical physics, computational physics, and instrumentation. (IQF 6.7)
 - c). Mastering knowledge of physics-based technology and its application. (IQF 6.8)

With this profile outline, physics graduates can work in all sectors of work, especially those involving the abilities mentioned above. As for some general descriptions of fields that are usually entered by physics graduates, can be seen in the Graduate Profession table.

From the description of the profile of graduates of the previous BP-Phys, graduates of the BP-Phys have very wide opportunities in various fields which can be seen in Table 3.1.

Profession	Description			
Educator	Educators in physics and related sciences, such as lecturers, teachers, instructors,			

Table 3.1. Professions of Graduates of the BP-Phys

	trainers, etc.
	Researchers in physics and related fields, both
	in government institutions, as well as in
Researcher	industry, such as researchers in corporate
	R&D, data scientists, business and financial
	analysts, etc.
	Become a consultant both related to the
Consultant	application of physics or other fields related to
Consulant	adaptive skills acquired during the learning
	process in physics.
	Leader at various managerial levels in various
Community Leader	fields, both in government institutions, private,
	and social institutions.
Entropropour	Entrepreneurs whether in fields related to
	physics or not.

With the description of the qualification level of the IQF level 6 and its derivatives for the Physics Bachelor level by PSI above, the Program Learning Outcomes (PLO) of the BP-Phys are derived in 5 aspects and can be seen in Table 3.2 below.

Table 3.2. Description of Programme Learning Outcomes (PLOs) based on the IQF standards at Department of Physics – UGM Yogyakarta

PLO	Description
PLO-1	Have faith and fear of God Almighty, apply good morals, ethics, initiative, and responsibility in completing their duties.
PLO-2	Able to explain theoretical concepts and principles of classical and modern physics, and be able to apply the basic concepts of physics and related mathematical methods in finding a solution to a physical problem.
PLO-3	Able to communicate the results of research on problems and physical behavior both in writing and verbally, as well as being able to lead and collaborate at various levels of roles in a team.
PLO-4	Able to design and carry out experiments/theoretical reviews, able to identify a physical problem based on the results of observations and experiments, and able to operate related technology.
PLO-5	Able to analyze various existing alternative solutions to physical problems and conclude them for making the right decisions, both in familiar and new problems.

Bloom's Taxonomy, which is a categorization of expert levels for educational purposes, is used to determine the level of proficiency or expertise of each aspect of the PLO of the Physics Undergraduate Study Program. There are three categories of expert levels in Bloom's Taxonomy in determining educational goals, namely taxonomy based on:

- 1. Knowledge-based goals / Cognitive,
 - Knowledge (PLO-2)
 - Long life learning (PLO-5)
- 2. Skill-based goals / Psychomotor,
 - General skills (PLO-3)
 - Special skills (PLO-4)
- 3. Affective goals,
 - Attitude (PLO-1)

Based on the Indonesian National Qualifications Framework (IQF) for the Undergraduate level (level 6), the keywords that graduates of the undergraduate program must possess are being able to apply, study, make designs, utilize science and technology, and solve problems. Referring to these general keywords, the relationship of each PLO of the Physics Undergraduate Study Program with the expert level of each category in Bloom's Taxonomy can be seen in Table 3.3.

k	(nowledge/Cognitive		Skills/Psychomotor		Attitude/Affective		
P1	Remember: Remembering or recognizing ideas, procedures, and theories that have been studied.	S1	Perception (perception/awareness): Using sensory signals to guide action, from sensory stimulation and selection to translating these signals.	A1	Receiving: Showing a willingness to participate in an activity or a willingness to hear.		
P2	Understand: Understand, explain, and interpret an instruction or problem in each language.	S2	Readiness (set): Readiness to take action in carrying out tasks or achieving goals. This readiness includes mental, physical, and emotional readiness, and all three will determine the response to different situations, also referred to		2 Responding: Willing to participate actively, pay attention, and react to a phenomenon or activity. It is also characterized by a voluntary willingness to respond or satisfaction.		
Ρ3	Apply: Apply concepts, abstractions, and methods to concrete situations. Able to apply learned concepts to new situations.	S 3	Integrated response (guided response): Knowing the steps needed to complete a task or achieve a goal. This stage is the initial phase in learning complex skills, which include imitation, trial, and error. Proficiency is achieved	A3	Internalizing values (valuing): Internalizing values, goals, phenomena, or activities, which can be characterized by an open attitude in appreciating a value.		

Table 3.3.	Bloom's	Taxonomy	rt Level

			through practicing the required procedures.		
P4	Analysis (analyze): Be able to isolate the constituent parts of a complex concept and understand the relationships between the parts and how they relate to one another. Able to distinguish hypotheses and facts, also which variables are relevant and which are not.	S4	Mechanism/basic proficiency: This stage is an intermediate phase in mastering complex skills. Learned responses have become habitual and are performed with sufficient confidence and proficiency.	A4	Organization (organization): Organizing values and dividing them into priorities by comparing different values and resolving contradictions between these values to form a consistent internal value system.
P5	Evaluation: Able to assess ideas, methods, or materials using data or a criterion based on observation or rationalization.	S5	Expert (complex overt response/expert): Able to perform a task or achieve a goal, including competently performing complex procedures. Proficiency at this level is characterized by the ability to carry out procedures without hesitation and automatically.	A5	Characterization (characterization by a value or value complex): Having a value system that controls behavior so that this behavior is pervasive, consistent, and predictable. Alternatively, in other words, the value system has become a character.
P6	Creation (create): Being able to create or arrange a structure or pattern from various elements to produce something new.	S 6	Adaptation: Skills mastered very well as described at the S5 level, and can modify procedures as needed in dealing with new situations.		
		S7	Original creation (origination): Create new procedures that suit a particular situation or problem. The resulting creativity is based on proficient skills in carrying out previously learned procedures.		

	, ,	
Aspect	Expertist Level	PLO
Cognitive	P2-P4	PLO-2, PLO-5
Psychomotor	S4-S6	PLO-3, PLO-4
Affective	A3-A5	PLO-1

Table 3.4. Relation of Programme Learning Outcomes (PLO) of the PhysicsUndergraduate Study Program with Bloom's Taxonomy

For each CPL category, whether cognitive, psychomotor, or affective, expert levels can be used in every lesson, whether through lectures or practicum/laboratory work, to the final project. Determining the extent of PLO achievement in each course can be considered by categorizing the year of study or whether a course is at an introductory level or has reached a higher expert level. Of course, in the Final Assignment, it is hoped that the expert level aimed at is the maximum level.

Tabel 3.5. PL	O Curriculum	2021	Relation	and	Competencies	of	Graduates	of	the
Physics Unde	rgraduate Stu	ıdy Pr	ogram						

	PLO-1.1	Have a personality that is faithful, pious, and has a noble character.
1. Attitude	PLO-1.2	Have empathy, respect, and appreciation for fellow human beings.
	PLO-1.3	Have a supportive attitude towards the balance of the environment and the natural surroundings.
2. Knowledge	PLO-2.1	Understanding and knowing the concepts underlying Classical Physics, which includes understanding various aspects of mechanics, various aspects of multi-particle systems, and various aspects of fundamental interactions (Gravity and Electromagnetics).
	PLO-2.2	Understand and know the concepts underlying Modern Physics, which include the theory of relativity and the concepts of quantum physics.
	PLO-2.3	Understand and know the concepts of Classical Physics and Modern Physics at various levels of systems, starting from elementary particle systems, and complex material systems to the macroscopic systems of the universe.
	PLO-2.4	Understand and know various basic experiments and some advanced experiments in Physics.

	PLO-2.5	Understand and know the various branches of mathematics needed to master various branches of Physics, including the use of numerical methods and programming.
	PLO-2.6	Understand and know some of the latest concepts of Modern Physics and Physics applications in the latest technological fields.
Skills	PLO-3.1	Can present, communicate, and provide arguments on a concept/idea related to the field of Physics in Indonesian and English.
eneral	PLO-3.2	Can work independently or cooperate in a work team/research team.
3. G	PLO-3.3	Can supervise and direct a practicum/experiment in the field of Physics.
	PLO-4.1	Skilled in making observations of natural phenomena.
ıl Skills	PLO-4.2	Skilled in conducting physics experiments at basic and advanced levels along with their analysis.
4. Speciá	PLO-4.3	Skilled in using mathematics to describe various physical phenomena.
,	PLO-4.4	Skilled in the use of Information and Communication Technology.
вu	PLO-5.1	Skilled at identifying a Physics problem expressed in Physics concepts.
e Learni	PLO-5.2	Skilled in making conjectures/hypotheses on a physics problem.
Long Lif	PLO-5.3	Skilled in planning and designing experiments in the field of physics and concluding the results of these experiments.
5.	PLO-5.4	Skilled in formulating the application of physics to solve natural problems and problems in human life both qualitatively and quantitatively.

4. LIST OF COURSES

The development of conceptual aspects can be carried out if the fields related to the theoretical concepts of physics and their supporting tools are mastered. Mastery of the theoretical concepts of physics includes mastery of the concepts and principles of the main branches of physics, namely classical mechanics, quantum mechanics, electromagnetics, statistical physics, atomic and molecular physics, nuclear and particle physics, incompressible

matter physics, image physics, gravity and cosmology, and philosophy. Knowledge. Mastery of theoretical physics concepts can be achieved if the tools that support the mastery of theoretical physics concepts are also developed. These supporting tools are tools for obtaining information, measuring, modeling, and analyzing phenomena taught theoretically, computationally, experimentally, and observation (observation). These tools are the principles and applications of mathematical methods, measurement methods (instrumentation), and computational methods. Another tool that needs to be developed is mastering processing and analyzing data from observations and experiments. Efforts to master the fields of physics and its supporting tools are described in compulsory courses in the Physics Undergraduate Study Program, Department of Physics. (Source IQF Standard Curriculum Physics and Physics education).

In addition to fields related to the main branches of physics, the fields of study in the Physics Study Program at the Physics Department are areas of expertise based on the main branches of physics. This field of expertise seeks to understand natural phenomena from the point of view of specific skills. These areas of expertise are:

- 1. Field of theoretical physics and mathematics with fields of study: cosmology, particle physics, and mathematical formulas for natural phenomena.
- 2. Computational fields with study areas: complex systems, emergent quantum material spectroscopy, DFT computations, particle interactions in the matter, and computational physics for education and teaching.
- 3. Spectroscopy and acoustics with fields of study: photoacoustics for medicine, thermoacoustics, and acoustic energy harvesting.
- Image and medical physics with study areas: Radiography and Computed Tomography (CT) Scans with gamma rays and X-Ray (ionizing radiation), Optical Coherence Tomography (OCT) with lasers (non-ionizing radiation), and magnetic interactions with organs or body tissues.
- 5. Field of functional materials with areas of study: development of biomaterial systems, development of multifunctional materials based on nanoscience and technology and their applications (sensors, supercapacitors, magnetic nanoparticles, nanofibers, photocatalysts, etc.), computational material design (CMD) for novel-functional predictions materials.
- 6. Field of instrumentation with fields of study: metrology and calibration, sensor systems, data acquisition, and artificial intelligence systems.

	Codo	Courses	Credits		Broroguioitoo
Semester	Code	Course	SKS	ECTS	Frerequisites
	UNU 100X	Religion	2	3.2	None
	MMM 1101	Calculus I	3	4.8	None
1	MKK 1101	Fundamental of Chemistry I	3	4.8	None
	MII 1201	Programming	3	4.8	None
	MFF 1011	General Physics I	3	4.8	None

4.1 List of Compulsory Courses

	MFF 1061	61 Measurement Technique in Physics		3.2	None
	MKK 1111	Basic Chemistry Experiment I	1	1.6	None
	MFF 1020	Mathematical Physics I	3	4.8	None
	MFF 1013	Laboratory for General Physics I	1	1.6	None
Credits total			21	33.6	
	MFF 1012	General Physics II	3	4.8	None
	UNU 1010	Pancasila	2	3.2	None
	MFF 1024	Numerical Method	2	3.2	None
	MFF 1850	Electronics	3	4.8	None
	MFF 1014	Laboratory for General Physics II	1	1.6	None
	MFF 1401	Mechanics I	2	3.2	General Physics I (MFF1011), Calculus I (MMM1101)
2	MFF 1053 Thermodynamics		3	4.8	General Physics I (MFF1011), Calculus I (MMM1101), Mathematical Physics II (MFF1021)
	MFF 1405	Waves	2	3.2	General Physics II (MFF1021*)
MFF 1021		Mathematical Physics II	3	4.8	General Physics I (MFF1011), Mathematical Physics I (MFF1020)
Credits total			21	33.6	
	MFF 2415	Electromagnetics I	2	3.2	General Physics II (MFF1012), Mathematical Physics I (MFF1020)
	MFF 2027	Computational Physics	2	3.2	Numerical Method (MFF1024), Calculus I (MMM1101)
	MFF 2851	Electronics Practicum**)	1	1.6	Electronics (MFF1850*)
2	MFF 2028	Numerical Method Practicum**)	1	1.6	Numerical Method (MFF1024)
3	MFF 2034	Quantum Physics I	3	4.8	Mechanics I (MFF1401)
	MFF 2024	Mathematical Physics III	3	4.8	Calculus I (MMM1101), Mathematical Physics I (MFF1020), Mathematical Physics II (MFF1021)
	MFF 2402	Mechanics II	2	3.2	Mechanics I (MFF1401)
	MFF 2031	Relaivity Theory	2	3.2	Mechanics I (MFF1401)
	MFF 2051	Statistical Physics	3	4.8	Thermodynamics (MFF1053), Quantum

					Physics I (MFF2034*)
	MEE 2062	Lab Assignments**)	1	16	Laboratory for General
	1011 2002		· ·	1.0	Physics II (MFF1014)
Credits total	ſ	1	20	32	
	MFF 2310	Atomic and Molecular Physics	3	4.8	General Physics II (MFF1012), Quantum Physics I (MFF2034), Relativity Theory (MFF2031*), Statistical Physics (MFF2051)
	MFF 2410	Electromagnetics II	2	3.2	Mathematical Physics II (MFF1021), Electromagentics I (MFF2415)
	MFF 2033	Modern of Physics Practicum**)	1	1.6	Laboratory for General Physics II (MFF1014)
	MFF 2035	Quantum Physics II	3	4.8	Quantum Physics I (MFF2034)
4	MFF 2601	Solid State Physics I	2	3.2	Quantum Physics I (MFF2034)
	MFF 2205	Nuclear and Particle Physics I	2	3.2	Quantum Physics I (MFF2034), Atomic and Molecular Physics (MFF2310), Relativity Theory (MFF2031*), Statistical Physics (MFF2051)
	MFF 2313	Atomic and Molecular Physics Experiments	1	1.6	Atomic and Molecular Physics (MFF2310)
	UNU 3000	Citizenship	2	3.2	None
	MFF 2060	Research Methodology and Scientific Communication**)	3	4.8	Minimum 50 Credits
Credits total	1	1	19	30.4	
	MFF 3015	Philosophy of Physics	2	3.2	None
	MFF 3411	Modern of Optics	2	3.2	Waves (MFF1405), Quantum Physics I (MFF2034)
	MFF 3206	Nuclear and Particle Physics II	2	3.2	Nuclear and Particle Physics (MFF2205)
5	MFF 3608	Solid of Physics II	2	3.2	Solid State Physics I (MFF2601)
	MFF 3204	Nuclear Physics Laboratory**)	1	1.6	Nuclear and Particle Physics (MFF2205)
	MFF 3602	Solid State Physics Laboratory**)	1	1.6	Solid State Physics I (MFF2601)
	UNU 4500	Community Service Program**)	3	4.8	Follow university rules
Credits total	1		13	20.8	
6					

7	MFF 4011	Final Project A**)	2	3.2	Research Methodology and Scientific Communication**) (MFF2060), Minimum 100 Credits
Credits total			2	3.2	
8	MFF 4013	Final Project B**)	4	6.4	Research Methodology and Scientific Communication**) (MFF2060), Final Project A (MFF4011*), Minimum 100 Credits
Credits total			4	6.4	

Sign description:

The * sign in the prerequisites states that the course can be taken together with the required courses.

The ** sign in the course name indicates that the course is offered in two semesters, odd and even.

UNU 100X Religion course, the letter X follows the following rules:

UNU 1000 = Religion of Islam

UNU 1001 = Catholic Religion

UNU 1002 = Christianity

UNU 1003 = Hindu Religion

UNU 1004 = Buddhism

UNU 1005 = Confucianism

4.2 List of Elective Courses

Somostor	Codo	Courses	Cre	edits	Proroquisitos
Semester	Code	Courses	SKS	ECTS	Frerequisites
	MFG 1101	Introduction to Geophysics	2	3.2	None
	MFF 2061	Metrology and Calibration of Physics	3	4.8	Measurement Technique in Physics (MFF 1061)
	MFF 2071	Instrumentation System	2	3.2	Electronics (MFF 1850)
	MFF 2853	2853 Sensor System		3.2	Electronics (MFF 1850)
	MFF 2873	Image of Physics	2	3.2	None
Δ	MFF 2953	Celestial Mechanics	2	3.2	Mechanics I (MFF 1401)
OD	O MFF 2029	Mathematics Theoretical of Physics I	2	3.2	None
	MFF 3053	Physics of Complex and Nonlinear Systems	2	3.2	Numerical Method (MFF 1024), Atomic and Molecular Physics (MFF 2310)
	MFF 3291	Nuclear and Particle Detection Method	2	3.2	Atomic and Molecular Detection Method (MFF 2322)
	MFF 3423	Introduction to Laser of	2	3.2	Electromagnetics I (MFF

		Physics			2415), Quantum Physics I (MFF 2034), Atomic and Molecular Physics (MFF 2310)
	MFF 3701	Medical of Physics	2	3.2	General Physics I (MFF 1011), General Physics II (MFF 1012)
	MFF 3843	Microwave	2	3.2	Electromagnetics I (MFF 2415), Mathematical Physics III (MFF 2024)I
	MFF 3871	Tomography of Physics	2	3.2	None
	MFF 3891	Environmental of Physics	2	3.2	None
	MFF 4033	Quantum Mechanics	2	3.2	Quantum Physics I (MFF 2034)
	MFF 4611	Liquid Crystal of Physics and Polymers	2	3.2	None
	MFF 4893	Introduction to Econophysics	2	3.2	None
	MFF 4043	Introduction to Astrophysics and Cosmology	3	4.8	Nuclear and Particle Physics I (MFF 2205)
		Internship	2	3.2	None
	MFF 1064	Graphical Methods in Physics	2	3.2	None
	MFF 1528	Simulation and Visualization in of Physics	2	3.2	None
	MFF 2070	Microcontroller and Interfacing	2	3.2	Electronics (MFF 1850)
	MFF 2322	Atomic and Molecular Detection Method	2	3.2	Atomic and Molecular Physics (MFF 2310)
	MFF 3002	Science and Religion	2	3.2	None
	MFF 3024	Capita Selecta Computational Physics	2	3.2	Computational Physics (MFF 2027)
EVEN	MFF 3030	Mathematics Theoretical of Physics II	2	3.2	None
	MFF 3114	Introduction to Particle of Physics	2	3.2	Nuclear and Particle Physics II (MFF 3206)
	MFF 3284	Reactor of Physics	2	3.2	Nuclear and Particle Physics I (MFF 2205)
	MFF 3288	Radiation Protection	2	3.2	Nuclear and Particle Physics I (MFF 2205)
	MFF 3436	Modern Acoustics	2	3.2	None
	MFF 3680	Introduction to Nanoscience	2	3.2	Atomic and Molecular Physics (MFF 2310)
	MFF 3810	Capita Selecta in Material Physics	2	3.2	Solid State Physics I (MFF 2601)
	MFF 3812	Materials Analysis	3	4.8	Solid State Physics I

	Method			(MFF 2601), Quantum Physics I (MFF 2034)
MFF 3820	Computational Material of Physics	3	4.8	Computational Physics (MFF 2027), Solid State Physics I (MFF 2601)
MFF 3872	Biophysics	2	3.2	Thermodynamics (MFF 1053), Waves (MFF 1405)
MFF 3876	Radiographic of Physics	2	3.2	None
MFF 3882	Energy	2	3.2	Thermodynamics (MFF 1053), Waves (MFF 1405)
MFF 3892	Science and Technology Entrepreneurship	2	3.2	None
MFF 4034	Advanced Quantum Mechanics	2	3.2	Quantum Physics I (MFF 2034)

5. SEMESTER LEARNING ACTIVITY PLANS (SLAP)

1. UNU 100X - Religion

Module Name	Religion
Code	UNU 100X
Semester(s) in which the module is taught	ODD semester
Module designation	Preparation stage
Person responsible for the module	Drs. Sunarta, MS.
Lecturer	Drs. Sunarta, MS.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	PLO 1 - Attitude. Have faith and fear of God Almighty, and apply good morals, ethics, initiative, and responsibility in completing their duties.
Course outcomes (CO)	 CO 1 : Students can manifest a good attitude (noble character) in studying the truth, including glorifying and glorifying the scientific council that teaches the Word of God and the words of the Prophet SAW as a source of truth. Students justify and believe in the Word of Allah SWT and the words of the Prophet SAW, which will be proven in their attitudes & actions as well as in preaching to others. CO 2 : Students realize & can explain the purpose of their lives in this world, and as servants of Allah, they can carry out their obligations. In contrast, as the Ummah of the Prophet, SAW students can assume

their responsibilities as preachers. Students can
explain & distinguish between the purpose of life and
the necessities of life
CO 3 : Students can realize that life in this world is
temporary & very short compared to the very long
journey of life after death. However, this short life
areatly determines their success happiness and safety
from this world to the hereafter, which is stornal. That
nom uns wond to the herealter, which is elemal. That
way, students can make the right decisions about what
to live in this world.
CO 4 : Students believe in & use "Religion" as a
fundamental cause to fulfill their life's needs and solve
their life problems in this world and fortify the dangers
their me problems in this wond and formy the dangers
that may come in their lives without eliminating external
causes, even trying to fulfill maximally the external
causes that are understood by those who deserve it,
man.
CO 5 : Students can explain that Islam is a mercy for
Muclime and the whole world. Students understand
now to realize Islam, that is, Rohmatan Lil 'Alamin.
CO 6 : Students realize that an essential part of a
human being is his heart and believe that to shape
personality, character & character as well as mental &
morals he must work on his heart. If the heart is good
it will produce good doode (what is soon, board, anakan
it will produce good deeds (what is seen, heard, spoken
about, thought about, decided on, and what is done is
all good). Students can manage the heart (soul) to
produce true faith and noble qualities.
CO 7 . Students can identify who a believer is and
students can believe that people who are successful &
siducints can believe that people who are successful a
safe in driving digital-based science and technology
advancements (numbers 0 and 1) are people who have
digital-based IMTAQ, namely people whose lives
believe in Laa ilaha illallah, which means there is no
God (0) other than Allah (1).
CO 8 Students can recognize ways to improve
themselves their families and communities in villages
aition 9 countries, and use the unready through and
cilies α countries, as well as the umman throughout
nature, which comes from the Creator of humans, who
is All-knowledgeable and All-Wise, whose truth is
guaranteed by the Truest Essence (Hag). namely Allah
SWT
CO 9 : Students are aware of & able to evoluin the
or a students are aware of a able to explain the
concept that Hijron & Nushron is the basis for
everything to progress and develop. This is the method
Allah gave to the Prophet SAW to educate his Ummah
to carry out the mission of religion so that it spreads to
all human beings throughout nature and overcomes
chaos & corruption including prosion of faith moral
decadence, and extremition on earth. To achieve this
decadence, and extremilies on earth. To achieve this,
Hijroh & Nushroh activities must be carried out to

	 propagate religion. CO 10 : Students can distinguish between da'wah activities and ta'lim activities. Today, most are confused about understanding that da'wah requires much knowledge or must be 'alim,' a requirement for people who teach / study/teaching. CO 11 : Students understand and practice that to know Allah requires ma'rifatullah effort, which is not enough with the effort of knowledge about Allah / knowing Allah's names in Asmaul Husna but must go through the mujahadah process in da'wah. CO 12 : Students realize and believe that the victory of the Muslim ummah is only if there is the help of Allah (nushrotullah). Students can identify when Muslims win when Muslims lose.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	 Main References : 1. Al-Qur'an and its commentary, free author, free publisher. 2. "Perjalanan Hidup Rasul yang Agung MUHAMMAD SAW" oleh Syaikh Shafiyur- Rahman al-Mubarokfury, Penerbit Darus Haq, 1427H / 2006M, Jakarta. 3. "Kembali kepada Al-Qur'an dan Sunnah" oleh K.H. Munawar Kholil, Penerbit PT Bulang Bintang, 1984M, Jakarta. 4. "Terjemah Riyadhus-Shalihin" oleh Drs. Muslich Shabir, penerbit CV Thoha Putra, 1981, semarang.

	1.	The manners or order must be fulfilled to
		examine the truth; Formation of character/attitude
		of learning.
	2.	Purpose of life and necessity; Human obligations
		and responsibilities.
	3.	The long journey of human life and the purpose it
		was created in the world.
	4.	Fadhoil & the benefits of religion in the world.
	5.	The virtues & benefits of religion in the world.
	6.	The method of managing the soul so that it gives
		birth to noble qualities; humans are moral,
	-	character & character.
	1.	vietode pengelolaan jiwa agar melanirkan sirat-
		silat mulia (Tazkiyatun nurus), Manusia bermorai,
Content	0	What is the definition of a baliayor? Eaith digital
Content	0.	tagwa is the principle of the success of the
		ummah
	9	What is the definition of a believer? Faith digital
	•••	tagwa is the principle of the success of the
		ummah.
	10	. Islamic struggle to solve the problems of the
		ummah; prophetic mission
	11	. Hijrah and Nusroh the principle of everything to
		progress & develop.
	12	. Methods of overcoming the erosion of faith and
		moral decadence.
	13	. Do have to be pious first?; The difference
		between da'wah and ta'lim.
	14	. Efforts to know Allan (mairitatulian).
	0	sitiste - Midterre Franz Final Franz
Examination forms	Pevr	ntive : ivilaterm Exam, Final Exam
	Affee	ctive :

2. MFF 1011 - General Physics I

Module Name	General Physics I
Code	MFF 1011
Semester(s) in which the module is taught	ODD semester
Module designation	Preparation stage
Person responsible for the module	Dr. Mitrayana
Lecturer	Dr. Mitrayana., Dr. Moh. Ali Joko., Dr. Eko S., Dr. Mirza S.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 3 x 50 = 150 minutes per week. Exercises and Assignments : 3 x 60 = 180 minutes per week. Private Learning : 3 x 60 = 180 minutes per week.
Credits points	3 SKS ~ 4.8 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions

	to physical problems.
	PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Explain concepts and solve cases in the motion of objects. CO 2 : Explaining concepts and solving cases in fluids, waves, and heat.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
	Main References :
	1. Halliday, D. Resnick, R and Walker, J., 2018, Fundamentals of Physics: Extende, tenth edition, John Wiley & Sons, Inc. USA.
Reading list	 Halliday, D. Resnick, R and Walker, J., 2018, Fundamentals of Physics: Extende, tenth edition, John Wiley & Sons, Inc. USA. Tipler, P. A. Mosca, G., 2008, Physics for Scientists and Engineers, sixth edition, W. H. Freeman and Company, New York, USA.
Reading list	 Halliday, D. Resnick, R and Walker, J., 2018, Fundamentals of Physics: Extende, tenth edition, John Wiley & Sons, Inc. USA. Tipler, P. A. Mosca, G., 2008, Physics for Scientists and Engineers, sixth edition, W. H. Freeman and Company, New York, USA. Serway, R.S. dan Jewett, 2014, Physics for Scientists and Engineers, ninth edition, Brooks/Cole Cengage Learning, 4.

	1. Introduction: Explanation of RPKPS, physical
	quantities, dimensions, units, and vectors
	2. Linear Motion: 1D Motion, GLB, GLBB, Free fall
	motion.
	Newton's Laws and Forces: The concept of
	force, Newton's Laws.
	4. Work, Power, and Energy
	5. Linear momentum and angular momentum:
	collisions and moments of inertia.
Content	Rotational Dynamics of Rigid Bodies.
	7. Kesetimbangan dan Elastisitas.
	8. Gravity.
	9. fluid.
	10. Vibration.
	11. Wave.
	12. Sound.
	13. heat 1
	14. heat 2
	Cognitive - Midterm Exam Final Exam
Examination forms	Psychomotor ·
	Affective :

3. MFF 1061 - Measurement Technique in Physics

Module Name	Measurement Technique in Physics
Code	MFF 1061
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Drs., Sunarta, M.S.
Lecturer	Drs., Sunarta, M.S.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems.

	alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar
	and new problems.
	CO 1 : Having a "common sense" of measurement is high.
	CO 2 : Mastering the process of analyzing measurement data and using measuring methods appropriately. So get accurate results.
Course outcomes (CO)	CO 3 : Able to conduct rejection of measurement results data that is suspected of deviation from the expected data.
	CO 4 : Able to analyze data with correct regression.
	CO 5 : Able to compare the results of multiple methods, choose the best method, and produce a weighted value.
	CO 6 : Able to appropriately develop measurement methodology and selecting instruments for object detection.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
	Main References :
	1. Taylor, J. R.1992. An Introduction to Error Analysis. University Science Book.California.
	2. Bevington, P. R.1999. Data Reduction and Error Analysis for the Physical Science. Mc Graw-Hill Book Co.
Reading list	3. Dulfer G, H & Fadeli., 1974. Metode Pengukuran & Analisa Data; FIPA-UGM.
	4. Darmawan Djonoputro; 1984. "Teori Ketidakpastian Menggunakan satuan SI"; ITB.Bandung.
	5. Staf Lab. Fisika Dasar, Jurusan Fisika-FMIPA UGM; 2012; "Petunjuk Praktikum Fisika Dasar Jurusan Fisika"; FMIPA-UGM Yogyakarta.

	6. Sunarta; Laporan LIT-2017 "Metode Jembatan
	Wheatstone untuk deteksi besaran Kelistrikan"; Dana
	Masyarakat UGM tahun 2017.
	 Pengantar Metode Pengukuran Fisika (Pentingnya Eksperimen dalam ilmu fisika "Common sense" dalam pengukuran; Ralat pengukuran; Jenis ralat dan sumbernya).
	 Metode Penentuan Ralat Pengamatan (Pengukuran tunggal dan taksiran ralatnya; Pengukuran ber-ulang; Standar deviasi & Standar nilai rata-2; Program SD pada calculator).
	 Metode Perambatan Ralat (Teori perambatan ralat; Ralat gayut & tak-gayut; Rumus-rumus ralat perambatan; Rumus-rumus khusus perambatan).
	 Metode Penyajian Hasil Akhir (Metode penyajian mutlak(absolute); Metode penyajian relatif; Angka ber-arti dan metode pembulatan).
Content	 Grafik Pengamatan (Mengenal sumbu-sumbu grafik; Metode penarikan garis grafik; Besaran- besaran grafik linear; Ralat grafik; Metode max/min pada penentuan ralat gradient).
	 Metode Regresi (Linearitas persamaan; Rumus regresi linear; Ralat regresi; Contoh penggunaan metode regresi).
	 Kurva-kurva data pengamatan (Histogram dan fungsi distribusi; Fungsi distribusi gauss; Probabilitas pengukuran; Tabel Prosentase Probabilitas P(σ) dan Q(σ)).
	 Metode Penolakan data (Pengertian Penolakan Data Pengukuran; Kriteria Penolakan Data; Metode to; Metode "chauvenet"; Contoh Aplikasi penolakkan). Perbandingan metode Ukur (Syarat membandingkan metode ukur; Diskripansi hasil ukur; Nilai berbobot dari berbagai metode ukur; Ralat berbobot; Contoh aplikasi). Logbook dan Laporan Penelitian (Judul/topic eksperimen;

	Tujuan eksperimen; Dasar teori/Hypotesis; Peralatan dan metode pengamatan; Pengolahan data dan grafik pengamatan; Pembahasan dan kesimpulan; Saran-saran).
Examination forms	Cognitive : Midterm Exam, Final Exam, Quiz, Assignments Psychomotor : Affective :

4. MFF 1020 - Mathematical Physics I

Module Name	Mathematical Physics I
Code	MFF 1020
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Prof. Dr. Agung B S Utomo, SU.
Lecturer	Prof. Dr. Agung B S Utomo, SU., Dr. Eko Sulistya, M. Si., Dr. Budi Eka Nurcahya, M. Si., Ikhsan Setiawan, S.Si., M.Si.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 3 x 50 = 150 minutes per week. Exercises and Assignments : 3 x 60 = 180 minutes per week. Private Learning : 3 x 60 = 180 minutes per week.
Credits points	3 SKS ~ 4.8 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems.

	PLO 4 - Special Skills. Able to design and carry out experiments/theoretical reviews, able to identify a physical problem based on the results of observations and experiments, and able to operate related technologies.
	CO 1 : Explain the concepts of Complex Algebra, Complex Roots, Powers of Complex Numbers, and Trigonometric Functions and their hyperbolic functions.
	CO 2 : Explain Harmonic Series and Complex Series.
	CO 3 : Explain Partial Derivative, Total Derivative, and Height/Extremum Value Derivation.
	CO 4 : Explaining two-dimensional (parabola, ellipse, and hyperbola) and three-dimensional (paraboloid, ellipsoidal, and hyperboloidal) Geometry analytics.
Course outcomes (CO)	CO 5 : Explains Vector algebra, dot product, and cross product.
	CO 6 : Explains vector calculus, vector derivation, and integration.
	CO 7 : Explaining vector, gradient, divergence, and rotation operators and cylindrical and spherical coordinates.
	CO 8 : Explain the integration of lines, planes, and volumes.
	CO 9 : Explain gradient integration, divergence, and rotation as well as Stokes' theorem and Gauss' theorem.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)

	Main References :
	1. K. F. Riley, M. P. Hobson and S. J. Bence, 2006, Mathematical methods for physics and engineering, edisi ketiga, Cambridge University Press, Cambridge.
	2. Tom M. Apostol, Calculus, jilid I, edisi kedua, John Wiley & Sons, 1967.
Reading list	3. Tom M. Apostol, Calculus, jilid II, edisi kedua, John Wiley & Sons, 1967.
	Additional References :
	1. Boas, M.L., 1983, Mathematical Methods in the Physical Sciences, edisi 2, John Willey & Sons, NY.
	2. Thomas G.B. dan Finney R.L., 1995, Calculus and Analytic Geometry, Addison Wesley.
Content	 Introduction (Lecture rules, exams, and assessments). Complex numbers (concept of complex numbers, complex number algebra, complex conjugates, polar representation de Moivre's theorem, complex roots, polynomial equations, logarithms, and powers of complex numbers hyperbolic functions: definition, hyperbolic trigonometric functions, hyperbolic identities, hyperbolic equations, inverse hyperbolic functions, calculus of hyperbolic functions), Series, harmonic or complex series. Partial Derivatives (multivariable functions, definitions of partial derivatives, total and differential derivatives, exact and inexact differentials, essential theorems, chain rule, variable changes, Taylor series, extreme values), Analytical Geometry (curves and surfaces, parametric, implicit, and explicit equations. Conic sections (parabola, hyperbola, ellipse), three-dimensional shapes (parabola, hyperbola, ellipsoid, spheroid). Vector Algebra (scalars and vectors, vector addition and subtraction, multiplication by scalars, basis vectors and vector components, magnitude of a vector, dot product, cross

	product, equation of line, equation of plane,
	surface of a sphere, determining distance to
	vector, reverse vector),
	9. Vector calculus (vector derivative concerning a
	parameter, vector integration concerning a
	parameter, curves, and surfaces in space, vector
	fields and scalar fields, isoscalar surfaces,
	10. Vector operators: gradient, divergence, rotation. important formulas, cylindrical coordinates and
	systems
	11. Line and surface integrals, connectivity of a
	region, Green's theorem on a plane, sustainable and potential fields, volume integral
	12. Integral forms of gradient, divergence, and rotation
	 (continued) gradient, divergence, and integral rotation forms.
	14. Stokes and Gauss theorem
Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor :
	Affective :

5. MFF 1013 - Laboratory for General Physics I

Module Name	Laboratory for General Physics I
Code	MFF 1013
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Dr.Sc. Ari Dwi Nugraheni, S.Si., M.Si.
Lecturer	Dr.Sc. Ari Dwi Nugraheni, S.Si., M.Si., Dr. Eko Sulistya, M.Si.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	CBL (Case Based Learning): Pretest, Presentation of material and some display material, Hands-on experiments using available set-ups, Making reports
Workload	 Lectures : 1 x 50 = 50 minutes per week. Exercises and Assignments : 1 x 60 = 60 minutes per week. Private Learning : 1 x 60 = 60 minutes per week.
Credits points	1 SKS ~ 1.6 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 3 - General Skills. Able to communicate the

	results of problem studies and physical behavior both in writing and verbally, as well as being able to lead and collaborate at various levels of roles in a team.
	PLO 4 - Special Skills. Able to design and carry out experiments/theoretical reviews, able to identify a physical problem based on the results of observations and experiments, and able to operate related technologies.
	PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
	CO 1 : Students can explain the concepts that underlie optical phenomena and relate them to the basic concepts [PLO 2 PLO 4 PLO 5].
Course outcomes (CO)	CO 2 : Students can explain the concepts of electrical phenomena and relate them to the basic concepts obtained. [PLO 2 PLO 4 PLO 5].
	CO 3 : Students can explain the concepts of mechanical phenomena and relate them to the basic concepts obtained [PLO 2 PLO 4 PLO 5].
	CO 4 : Students can convey their experiments' results in a written report [PLO 3].
	CO 5 : Students can work individually or in groups in experiments [PLO 3].
Media employed	Offline (Experimental tool) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References : 1. Buku Panduan Praktikum Fisika Dasar II

Content	 Gravity acceleration Coefficient of long expansion Boyle's Law Water Cooling Muffled vibration Spring constant The flow of water in the capillary tube Stem oscillation Equivalence of Heat-Electricity
Examination forms	Cognitive : Pretest, Final test Psychomotor : Practicum Affective : Practicum Report
6. MFF 1012 - General Physics II

Module Name	General Physics II
Code	MFF 1012
Semester(s) in which the module is taught	EVEN semester
Module designation	Preparation stage
Person responsible for the module	Dr. Rinto Anugraha NQZ
Lecturer	Dr. Rinto Anugraha NQZ
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 3 x 50 = 150 minutes per week. Exercises and Assignments : 3 x 60 = 180 minutes per week. Private Learning : 3 x 60 = 180 minutes per week.
Credits points	3 SKS ~ 4.8 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude

	them for appropriate decision-making, both in familiar and new problems.
	CO 1 : Students can master the concepts, theories, and laws of physics, especially on electricity, magnetism, electromagnetic waves, optics, and modern physics, then formulate them in mathematical formulas, solving physics problems related to the topics above. [PLO 2, PLO 5].
Course outcomes (CO)	CO 2 : Students can explain various scientific phenomena in nature and in everyday life related to topics on electricity, magnetism, electromagnetic waves, optics, and modern physics based on the concepts, theories, and laws of physics that have been taught. [PLO 2, PLO 5].
	CO 3 : Students can study advanced fields of physics based on the fundamental physics knowledge that has been taught. [PLO 2, PLO 5].
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
	Main References :
	 Halliday, D., Resnick, R and Walker, J., 2018, Fundamental of Physics, Fundamental of Physics Extended, Edisi 11, John Wiley & Sons, Inc, USA.
Reading list	 Tipler, P.A., 2008, Physics for Scientists and Engineers, sixth edition, W. H. Freeman and Company, New York, USA
	 Raymond A. Serway, dan John Jewett, 2014, Physics for Scientists and Engineers, Brooks/Cole Cengage Learning, Singapore.

	1.	Electrostatics I (Electric Charge and Coulomb's
		Law, Electric Field, Gauss's Law, Conductors).
	2.	Electrostatics II (Electric Potential, Electric
		Potential Energy, Capacitance, and Dielectric).
	3.	Dynamic electricity (Electric current, Electrical
		Resistance, Electrical power, Electrical
		measuring instruments, Kirchhoff's Laws, RC
		Circuits).
	4.	Magnetism I (Magnetic Field, Magnetic Force,
		Biot-Savart Law, Ampere's Law, Gauss's Law in
		Magnets, Magnetism in Matter).
	5.	Magnetism II (Faraday's Law, Lenz's Law,
		Induction and Inductance, RL and RLC Circuits,
		Energy in a Magnetic Field, AC Current, Power in
		AC Circuits).
	6.	Maxwell's Equations (Shifting Currents,
		Maxwell's Equations in Vacuum and Matter).
	7.	Electromagnetic Waves (Field Electromagnetic
		Waves, Electromagnetic Wave Spectrum).
	8.	Light and Optical Rays (Properties of Light,
Content		Speed of Light, Huygens Principle, Dispersion).
	9.	Geometric Optics (Snell's Law, Formation of an
		image by reflection, Formation of an image by
		refraction, Optical Tools).
	10.	Physical Optics (Light as a wave, Light
		interference, Light diffraction).
	11.	Modern Physics I (Galileo's Relativity, Michelson-
		Morley Experiment, Einstein's Postulates,
		Lorentz Transformation, Relativistic Momentum
	10	and Energy, Mass and Energy).
	12.	Modern Physics II (Black Body Radiation,
		Planck's Quantum Theory, Photoelectric Effect,
		Compton Effect, Uncertainty Principles, Atomic
		Nuclear Deastiane)
	40	Nuclear Reactions). Modern Dhusion III (Astronhusion and
	13.	
	1 /	Cosmology). Modern Physics IV (Electrical properties of
	14.	Nouem Physics IV (Electrical properties of
		Sumorconductors)

Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor : Affective :

7. MFF 1024 - Numerical Method

Module Name	Numerical Method
Code	MFF 1024
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Drs. Pekik Nurwantoro, M.S., Ph.D
Lecturer	Drs. Pekik Nurwantoro, M.S., Ph.D., Dr. Fahrudin Nugroho., Dr. Iman Santoso., Dr. Eko Sulistyo
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 4 - Special Skills. Able to design and carry out

	experiments/theoretical reviews, able to identify a physical problem based on the results of observations and experiments, and able to operate related technologies.
	PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
	CO 1 : Students have the ability in Physics Skills, namely how to formulate and describe (to describe) the physical phenomena being studied and reveal important information in these physics problems through various tricks or specific mathematical procedures and utilize various approximations.
	CO 2 : Students have the ability in Analytical Skills, namely how to pay attention to physics problems in detail, analyze problems and build arguments logically and carefully.
Course outcomes (CO)	CO 3 : Students have the ability in Investigative Skills, namely how to search for physics problems from various sources and references to understand important information.
	CO 4 : Students have the ability in Problem-Solving Skills, namely how to solve a problem with a structured solution (well-defined solutions), formulate a problem carefully, and try other approaches (approaches) to improve solving a challenging problem (challenging problems).
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)

	Main References :
Reading list	 J. Kiusalaas, 2013, Numerical Methods in Engineering with Python 3, Cambridge University Press, ISBN 978-1-107-03385-6
	 Curtis F. Gerald dan Patrick O Wheatley, 2004, Applied Numerical Analysis, 7th Eddition, Addison Wesley
	 A. B. Setio Utomo, 2016, Pengantar Metode Komputasi untuk Sains dan Teknik, UGM Press, ISBN: 978-602-386-091-3
	 Sholihun dan Zohan Syah Fatomi, 2021, Pemrograman dan Komputasi Numerik Menggunakan Python, UGM Press, ISBN: 978- 602-386-957-2
Content	 An introduction to numerical methods, some of the necessary tools, and a brief review of programming languages Explanation regarding number representation, discretization, and an overview of approximation steps (approach or approximation). An understanding of the accuracy of numerical calculations and their relation to computer performance. Explanation of various methods for evaluating function values based on the series method. Explanation of various methods for evaluating function values based on recurrence links. The bisection method is the explanation for calculating the zero point or finding the roots of any function without involving the derivative of the function. Explanation of calculating the zero point or finding the roots of any function by involving the derivative of the function, namely the Newton- Daphage method
	 Raphson method 8. Explanation of the method of calculating integral values in a numerical discretization with various integral forms and integral limits 9. Explanation of the method of calculating integral values in numerical quadrature with various integral forms and integral limits

8. MFF 1850 - Electronics

Module Name	Electronics
Code	MFF 1850
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Eng. Ahmad Kusumaatmja, S.Si., M.Sc.
Lecturer	Dr. Eng. Ahmad Kusumaatmja, S.Si., M.Sc.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 3 x 50 = 150 minutes per week. Exercises and Assignments : 3 x 60 = 180 minutes per week. Private Learning : 3 x 60 = 180 minutes per week.
Credits points	3 SKS ~ 4.8 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude

	them for appropriate decision-making, both in familiar and new problems.
	CO 1 : Students can apply the fundamental laws of circuits and their analysis methods to direct current (DC) electric circuits.
	CO 2 : Students can analyze the use of capacitors and inductors.
	CO 3 : Students can analyze the use of diodes and transistors.
Course outcomes (CO)	CO 4 : Students can use operational amplifiers according to their characteristics and functions.
	CO 5 : Students can apply the concept of digits, number systems (codes), and converters.
	CO 6 : Students can apply digital electronics concepts to operational amplifiers and logic gates (truth tables).
	CO 7 : Students can understand various combinations of logic.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
	Main References :
	1. Horowitz, Paul, and Winfield Hill. 2015. The Art of Electronics. 3rd ed. Cambridge, TAS, Australia: Cambridge University Press.
Reading list	2. Sadiku, M.N.O., dan Alexander, C.K., 2016, Fundamentals of Electric Circuits, 5th edition, The McGrawHill Companies, Inc.
	3. Wang, M., 2010, Understandable Electric Circuits, The Institution of Engineering and Technology, London, United Kingdom.
	4. Tokheim, R.L., 1995, Elektronika Digital, edisi kedua, Erlangga, Jakarta.

	1. Basic Concepts
	2. Basic Laws
	3. Circuit Analysis Methods and circuit simulation
	software
	4. Theorem on circuits
	5. Diodes and Transistors
	6. O.P. Amps
	7. RLC circuit
Content	8. AC circuit
	Circuit Analysis Method on AC Current
	9. Digital Electronics
	Number System
	10. Multivibrator Basic logic gate circuit
	11. Flip-flop
	Counter
	multiplexer
	PLD (Programmable Logic Devices)
	Cognitive : Midterm Exam, Final Exam, Quiz,
Examination forms	Assignments
	Psychomotor : Project Results
	Affective : Attendance

9. MFF 1014 - Laboratory for General Physics II

Module Name	Laboratory for General Physics II
Code	MFF 1014
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr.Sc. Ari Dwi Nugraheni, S.Si., M.Si.
Lecturer	Dr.Sc. Ari Dwi Nugraheni, S.Si., M.Si., Drs. Yosef Robertus Utomo, S.U.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	CBL (Case Based Learning): Pretest, Presentation of material and some display material, Hands-on experiments using available set-ups, Making reports
Workload	 Lectures : 1 x 50 = 50 minutes per week. Exercises and Assignments : 1 x 60 = 60 minutes per week. Private Learning : 1 x 60 = 60 minutes per week.
Credits points	1 SKS ~ 1.6 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 4 - Special Skills. Able to design and carry out

	experiments/theoretical reviews, able to identify a physical problem based on the results of observations and experiments, and able to operate related technologies.
	PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
	CO 1 : Students can explain concepts based on optical phenomena and relate them to the basic concepts [PLO 2 PLO 4 PLO 5].
Course outcomes (CO)	CO 2 : Students can explain the concepts of electrical phenomena and relate them to the basic concepts obtained. [PLO 2 PLO 4 PLO 5]
	CO 3 : Students can convey the results of their experiments in the form of a written report [PLO 3]
	CO 4 : Students can work either individually or in groups in carrying out experiments [PLO 3]
Media employed	Offline (Experimental tool) and Online (Zoom Meeting, Google Meet, Google Classroom)
	Main References :
	6. Buku Panduan Praktikum Fisika Dasar II
Reading list	 Wilson, J.D.,& Hernandez, C.A.,2014, Physics Laboratory Experiments, 7th ed, BROOKS/COLE Cengage Learning, USA.
	 Kraftmakher, Y., 2015, Experiments and Demonstrations in Physics, 2nd ed., World Scientific Publishing Co. Pte. Ltd

	1.	Newton's ring, Measurement of electric power,
		Photometry, Measurement of Refractive Index,
		Earth's Magnetic Field, Oscilloscope, Stefan's
		Law, Ohm's Law
	2.	Newton's Rings, Electrical power measurement,
		Photometry, Refractive Index Measurement,
		Earth's Magnetic Field, Oscilloscope, Stefan's
		Law, Ohm's Law
	3.	Newton's ring, Measurement of electric power,
		Photometry, Measurement of Refractive Index,
		Earth's Magnetic Field, Oscilloscope, Stefan's
		Law, Ohm's Law
	4.	Newton's Rings, Electrical power measurement,
		Photometry, Refractive Index Measurement,
		Earth's Magnetic Field, Oscilloscope, Stefan's
		Law, Ohm's Law
	5.	Newton's ring, Measurement of electric power,
		Photometry, Measurement of Refractive Index,
		Earth's Magnetic Field, Oscilloscope, Stefan's
		Law, Ohm's Law
	6.	Newton's ring, Measurement of electric power,
Content		Photometry, Measurement of Refractive Index,
Content		Earth's Magnetic Field, Oscilloscope, Stefan's
		Law, Ohm's Law
	7.	Newton's Rings, Electrical power measurement,
		Photometry, Refractive Index Measurement,
		Earth's Magnetic Field, Oscilloscope, Stefan's
	•	Law, Ohm's Law
	8.	Newton's Rings, Electrical power measurement,
		Photometry, Refractive Index Measurement,
		Law Obmin Law
	0	Law, Olini's Law
	9.	Reasonable of Potential Power,
		Earth's Magnetic Field Oscilloscope, Stefan's
		Law Obm's Law
	10	Newton's Rings Electrical power measurement
	10.	Photometry Refractive Index Measurement
		Farth's Magnetic Field Oscilloscope Stefan's
		Law, Ohm's Law
	11	Newton's ring. Measurement of electric power
		Photometry, Measurement of Refractive Index
		Earth's Magnetic Field, Oscilloscope, Stefan's
		Law, Ohm's Law

	 13. Newton's Rings, Electrical power measurement, Photometry, Refractive Index Measurement, Earth's Magnetic Field, Oscilloscope, Stefan's Law, Ohm's Law 14. Newton's Rings, Electrical power measurement, Photometry, Refractive Index Measurement, Earth's Magnetic Field, Oscilloscope, Stefan's Law, Ohm's Law
Examination forms	<i>Cognitive</i> : Pretest, Final test <i>Psychomotor</i> : Practicum <i>Affective</i> : Practicum Report

10. MFF 1401 - Mechanics I

Module Name	Mechanics I
Code	MFF 1401
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Mitrayana
Lecturer	Dr. Mitrayana., Drs. Imam Suyanto, M. Si., Dr. Yosef Robertus Utomo, S. U., Ibnu Jihad, S. Si., M. Sc.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	General Physics I (MFF1011), Calculus I (MMM1101)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various

	alternative solutions to physical problems and conclude
	them for appropriate decision-making, both in familiar
	and new problems.
Course outcomes (CO)	 CO 1 : Explain and solve cases of dynamics of single-body motion CO 2 : Explain and solve cases of dynamics of motion of many bodies and rigid bodies .
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References :
	1. Fowles & Cassiday (1993), Edisi 7; Analytical Mechanics.
	2. David Morin (2004); Introductory Classical Mechanics, with Problems and Solutions.
	3. Qiang Yuan-qi dkk. (!994); Problems and Solutions on Mechanics; Major American University Ph. D. Qualifying Questions and Solution.
Content	 Basic Concepts and Vectors: measures of space and time: units and dimensions, vectors, multiplication of scalars, multiplication of vectors, Examples of Multiplication of vectors: Moment of Force, Multiplication of Three vector quantities, Changes in Coordinate Systems: Transformation Matrices, Vector Derivatives, Particle Position Vectors: Velocity and Acceleration in Perpendicular Coordinates, Velocity, and Acceleration in Plane Polar Coordinates, Velocity and Acceleration in Cylindrical and Spherical Coordinates. Newton's Mechanics and Reciprocal Motion of Particles: Newton's Laws of Motion: An Introduction to History, Straight Motion: Uniform

	Acceleration Under Constant Force,
4.	Position-dependent force is kinetic and potential
	energy; velocity-dependent force is fluid
	resistance and terminal velocity.
5.	Oscillation: Linear Reverse Force: Harmonic
	Motion, Overview of Energy in Harmonic Motion,
	Damped Harmonic Motion, Forced Harmonic
	Motion: Resonance.
6.	The general motion of particles in three
	dimensions: Introduction: General Principles,
	Potential Energy Functions in Three Dimensional
	Motion: Del operator, Force of Separable Types:
	Projectile Motion. Harmonic Oscillators in Two
	and Three Dimensions, Motion of Charged
	Particles in Electric and Magnetic Fields,
	Constrained Particle Motion
7.	Noninertial Reference Systems: Accelerated
	Coordinate Systems and Inertial Forces. Rotating
	Coordinate Systems. Particle Dynamics in
	Rotating Coordinate Systems, Effects of Earth's
	Rotation, Foucault's Pendulum.
8.	Gravity and Central Force: Gravity Force
01	between Uniform Spheres and Particles. Kepler's
	Laws of Planetary Motion, Kepler's Second Law
	Equal Areas, Kepler's First Law: Ellipses
	Kepler's Third Law:
9	Harmonic Law Potential Energy in a
01	Gravitational Field: Gravitational Potential
	Potential Energy in the Central General Field
	Orbital Energy Equation in the Central Field.
	Orbital Energy
	in the Inverse-Square Field Limits of Radial
	Movement: Effective Potential, Near-Circular
	Orbit in the Central Field: Stability
10	Particle system dynamics: Introduction: Center of
	Mass and Linear Momentum of the System
	Angular Momentum and Kinetic Energy of the
	System Motion of Two Interacting Objects:
	Reduced Mass Collision Oblique Collision and
	Scattering: Comparison of Laboratory
	Coordinates and Center of Mass
11	Rigid Body Mechanics: Planar Motion: Center of
	Mass of Rigid Bodies Rotation of Rigid Bodies
	on Fixed Axis: Moment of Inertia Calculation of

Examination forms	<i>Cognitive</i> : Midterm Exam, Final Exam <i>Psychomotor</i> : <i>Affective</i> :
	 Moment of Inertia, Physical Pendulum, Angular Momentum of Rigid Bodies in Laminar Motion, Examples of Laminar Motion of Rigid Bodies, Impulses and Collisions Involving Rigid Bodies 12. Calculation of Moment of Inertia, Physical Pendulum, Angular Momentum of Rigid Bodies in Laminar Motion, Examples of Laminar Motion of Rigid Bodies, Impulses, and Collisions Involving Rigid Bodies 13. The motion of Rigid Bodies about Any Axes: Moments and Products of Inertia—Angular Momentum and Kinetic Energy, Principal Axis of Rigids, Euler's Equations of Motion of Rigid Bodies, Free Rotations of Rigid Bodies: Geometric Description of Motion, Free Rotation of Rigid Bodies with Axis of Symmetry: Analytical Treatment, Description of Rigid Bodies Rotation Relative to a Fixed Coordinate System: Euler Angles, Movement from Above, Energy and Nutation Equations, Gyrocompass 14. Principal Axes of Rigid Bodies, Free Rotation of Rigid Bodies, Free Rotation of Rigid Bodies, Free Rotation of Rigid Bodies, Euler's Equation of Motion, Free Rotation of Rigid Bodies, Free Rotation of Rigid Bodies, Rovement from Above, Energy and Nutation Equations, Gyrocompass 14. Principal Axes of Rigid Bodies, Free Rotation of Rigid Bodies; Ree Rotation of Rigid Bodies, Ree Rotation of Rigid Bodies, Free Rotation of Rigid Bodies with Axis of Symmetry: Analytical Treatment, Description of Rotation of Rigid Bodies Relative to a Fixed Coordinate System: Euler's Angles.

11. MFF 1053 - Thermodynamics

Module Name	Thermodynamics
Code	MFF 1053
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Prof. Dr. Harsojo, SU., M.Sc.
Lecturer	Prof. Dr. Harsojo, SU., M.Sc., Mirza Satriawan, S.Si., M.Si., Ph.D.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 3 x 50 = 150 minutes per week. Exercises and Assignments : 3 x 60 = 180 minutes per week. Private Learning : 3 x 60 = 180 minutes per week.
Credits points	3 SKS ~ 4.8 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	General Physics I (MFF1011), Calculus I (MMM1101), Mathematical Physics II (MFF1021)
Module objectives/intended learning outcomes PLO	PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems.

	PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	CO 1 : Students can describe the state of balance of a system and the dynamics of its changes to changes in related variables.
	CO 2 : Students can describe typical processes in changing the state of a system (forms: solid, liquid, and gas) in 2D diagrams.
	CO 3 : Students can use exact and inexact differential equations to solve the problem of changing the system's state.
	CO 4 : Students can apply the Laws of Thermodynamics I in reversible and non-reversible processes and their use in thermodynamic machines.
	CO 5 : Students can apply the Laws of Thermodynamics II and the TDS Equation in calculating the entropy change of the universe and its use in thermodynamic machines.
	CO 6 : Students can apply the concept of Thermodynamic Potential (including free energy and enthalpy) and its role in thermodynamic systems.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)

	Main References :
	1. Greiner, W., dkk. 1997, Thermodynamic and Statistical Mechanics, Springer, New York.
Reading list	2. Sears, F.W.,and Salinger, G.L, 1982, Thermodynamics, Kinetic Theory, and Statistical Thermodynamics, Addison-Wesley, Reading, massachussetts.
	3. Zemansky,M.W., dan Ditman, 1984, Heat and Thermodynamics, McGraw-Hill, New York.
	4. Dimsiki Hadi, Termodinamika, Diktat LPTK
Content	 Basic Concepts: (1). System, environment, boundary. Definitions: Thermodynamic equilibrium: Macroscopic quantities. (2). State of a thermodynamic system Processes and cycles Basic principles of temperature, scale, and temperature measurement, Hk. 0th thermodynamics. (3). Pressure, Energy Basic Concepts: (1). System, environment, boundaries. Definitions: Thermodynamic equilibrium: Macroscopic quantities. (2). The state of a thermodynamic system Processes and cycles Basic principles of temperature, scale, and temperature measurement, Hk. 0th thermodynamics. (3). Pressure, Energy Equation of State Situation Equation (1). Partial Derivative. (2). Application of Partial Derivatives to Thermodynamic Systems: Coefficients of Cubic Expansion and Condensation. (3). Exact differential (1). Work or Effort (2). Internal Power (Dakhil Power) (3). Heat / Heat Flow (4). Heat capacity, specific heat (5). First Law of Thermodynamics (6). Adiabatic Process (7). Carnot cycle. (7). Nork or Effort (2). Internal Energy (Dakhil Energy)

	(3). Heat Flow / Heat
	(4). Heat capacity, specific heat
	(5). First Law of Thermodynamics
	(6). Adiabatic Process
	(7). Carnot Cycle.
	8. 2nd Law of Thermodynamics
	9. Entropy
	10. Statements about the 2nd Law of
	Thermodynamics
	11. Thermodynamic machines
	12. Helmholtz function and Gibbs function
	13. balance and terms
	14. 3rd Law of Thermodynamics
	Cognitive Midtorm Even Final Even Quiz
	Accignmente
Examination forms	Assignments Benchamatory Droject Regulte
	Affective : Attendence
	Affective : Attendance

12. MFF 1405 - Waves

Module Name	Waves
Code	MFF 1405
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Juliasih Partini
Lecturer	Dr. Juliasih Partini., Dr. Wiwit Suryanto
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	General Physics II (MFF1021*)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude

	them for appropriate decision-making, both in familiar and new problems.
	CO 1 : Students can understand the basic phenomenological understanding of oscillations as the concept that underlies waves, both in mechanical and electromagnetic oscillations. (PLO 2, PLO 5).
	CO 2 : Students can use wave differential equations to explain wave propagation. (PLO 2, PLO 5).
Course outcomes (CO)	CO 3 : Students can describe and explain mechanical wave propagation in kinematics, wave dynamics, and wave energetics. (PLO 2, PLO 5).
	CO 4 : Students can identify and explain the propagation of electromagnetic waves in a vacuum or medium and electromagnetic radiation. (PLO 2, PLO 5).
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
	Main Deferences -
Reading list	1. Hirose, A., dan K.E. Longren, 2010: Fundamental of wave phenomena, Edisi ke 2, John Wiley & Sons.
	2. Pain., H.J., 2005: The physics of vibrations and waves, J. Wiley & Sons.
	3. Zahara M., 1994: Gelombang dan optika, Proyek Pembinaan Tenaga Kependidikan PT, Ditjen DIKTI, Depdikbud.

	1. Oscillation		
	2. Wave Motion		
	3. Wave Motion		
	4. Mechanical Wave		
	5. Mechanical Wave		
	Sound waves travel through solids, liquids, and gases		
	 Sound waves travel through solids, liquids, and gases 		
Content	8. Wave Reflection and Standing Wave		
	9. Spherical Waves and Standing Waves		
	10. Doppler Effect on Sound Waves and Shock		
	Waves		
	11. The Doppler Effect on Sound Waves and Shock Waves		
	12. Electromagnetic wave		
	13. Electromagnetic wave		
	14. Electromagnetic Wave Radiation		
	Cognitive : Midterm Exam, Final Exam, Quiz,		
Examination forms	Assignments		
	Psychomotor :		
	Affective :		

13. MFF 1021 - Mathematical Physics II

Module Name	Mathematical Physics II
Code	MFF 1021
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Prof. Agung B S Utomo, SU.
Lecturer	Dr. Prof. Agung B S Utomo, SU., Dr. Ing. Ari Setiawan, M.Si., Dr. Rinto Anugroho, NQZ, M.Si.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 3 x 50 = 150 minutes per week. Exercises and Assignments : 3 x 60 = 180 minutes per week. Private Learning : 3 x 60 = 180 minutes per week.
Credits points	3 SKS ~ 4.8 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	General Physics I (MFF1011), Mathematical Physics I (MFF1020)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 4 - Special Skills. Able to design and carry out

	experiments/theoretical reviews, able to identify a physical problem based on the results of observations and experiments, and able to operate related technologies.
	CO 1 : Can explain the concepts of matrices, determinants, special matrices, swavectors and self-values of a matrix, changes in basis, diagonals of matrices, systems of linear equations, and vector spaces.
	CO 2 : Can explain the Fourier Series and Complex Fourier Series, the Fourier transform and its properties, the uncertainty principle, and the Dirac delta.
	CO 3 : Can explain the Fourier series for odd and even functions, convolution, and deconvolution.
	CO 4 : Can explain the Fourier transform for high dimensions.
Course outcomes (CO)	CO 5 : Be able to explain the Laplace transform. Inversion of the Laplace transform and methods of solving differential equations with the Laplace transform.
	CO 6 : Can explain ordinary differential equations (equations of the first degree, equations of the second degree, answers with sequences: ordinary and singular points, series around ordinary points, rows around singular points),
	CO 7 : Can explain the press. Legendre, press. Hermite, press. Bessel, Etc.
	CO 8 : Can explain partial differential equations (boundary conditions, variable separation, Fourier analysis, diffusion equations, heat propagation, and waves.
	CO 9 : Can explain Integral Equations.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google

	Classroom)	
	Main References :	
Reading list	1. K. F. Riley, M. P. Hobson and S. J. Bence, 2006, Mathematical methods for physics and engineering, edisi ketiga, Cambridge Press.	
	2. Tom M. Apostol, Calculus, jilid I, edisi II, John Wiley & Sons, 1967	
	3. Tom M. Apostol, Calculus, jilid II, edisi II, John Wiley & Sons, 1967.	
	Additional References :	
	1. Boas, M.L., 1983, Mathematical Methods in the Physical Sciences, edisi 2, John Willey & Sons, NY.	
	2. Thomas G.B. dan Finney R.L., 1995, Calculus and Analytic Geometry, Addison Wesley.	
Content	 Matrix, determinant, special matrices, swavector and self-value of a matrix, the transformation of bases, diagonalization of a matrix, systems of linear equations, and vector spaces. Matrices, determinants, special matrices, swavectors and self-values of a matrix, changes in basis, matrix diagonals, systems of linear equations, and vector spaces. Fourier Series and Complex Fourier Series, Fourier transforms and their properties, uncertainty principle, Dirac delta. Fourier and Complex Fourier series, the Fourier transform and its properties, the uncertainty principle, and the Dirac delta. Series of Functions for Functions odd and even, convolution and deconvolution Fourier transform for high dimensions. Laplace transform (Laplace transform for derivatives and integrals, properties of Laplace transform). Laplace transform (Laplace transform for derivatives and integrals, properties of Laplace 	

14. MFF 2415 - Electromagnetics I

Module Name	Electromagnetics I	
Code	MFF 2415	
Semester(s) in which the module is taught	ODD semester	
Module designation	Undergraduate stage	
Person responsible for the module	Drs. Wagini R., M.S.	
Lecturer	Drs. Wagini R., M.S., Idham Syah Alam, S.Si., M.Sc.	
Language	Indonesian	
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics	
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods	
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week. 	
Credits points	2 SKS ~ 3.2 ECTS	
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course	
Required and recommended prerequisites for joining the module	General Physics II (MFF1012), Mathematical Physics I (MFF1020)	
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various and the physical problems. 	

	them for appropriate decision-making, both in familiar and new problems.
	CO 1 : Able to represent vectors and vector algebra in various coordinate systems.
	CO 2 : Able to display nabla, divergence, curl, and laplacian operators in various coordinate systems, and be able to identify and apply various coordinate systems to various geometries (shapes) of the physical system under review and be able to apply operations and physical meanings of nabla, divergence, curl and laplacian to electric and magnetic fields.
	CO 3 : Able to understand the physical meaning of Stoke's theorem and Gaus's theorem and able to apply Gauss's theorem and Stoke's theorem to display Maxwell's equations in Differential form.
Course outcomes (CO)	CO 4 : Be able to distinguish the properties of electric field lines and magnetic fields about the concept of electric and magnetic monopoles and see the relationship between fields and field sources in Coulomb's law and Ampère's law.
	CO 5 : Identify the fundamental laws of electrostatics and magnetostatics and display Maxwell's equations about electric and magnetic monopoles.
	CO 6 : Able to review electric and magnetic fields in materials through electric polarization and magnetization of materials.
	CO 7 : Able to review the electrical aspects of materials made up of atoms and chemical bonds through the concepts of free and bound charges and magnetic moments.
	CO 8 : Able to apply boundary conditions for electrostatic and magnetostatic fields.
	CO 9 : Be able to distinguish the meaning of electric field, electric flux density, and magnetic field and magnetic flux density.

	CO 10 : Be able to identify the properties of electric and magnetic forces as well as the Lorentz force law.
	CO 11 : Be able to express the magnetic force acting on particles and conductors that conduct current and the interaction between two conductors that conduct current.
	CO 12 : Able to understand the integration of electrical and magnetic phenomena through Maxwell's equations.
	CO 13 : Be able to display Maxwell's equations for time-dependent fields.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References :
	1. Griffiths, D. J., 1999, Introduction to Electrodynamics, Prentice Hall, Upper Saddle River, New Jersey.
	2. Wangness, R. K. 1979, Electromagnetic Fields, John Wiley & Sons, USA.
	3. Reitz, J. R., F. J. Milford, dan R. W. Christy, 1992 : Foundations of Electromagnetic Theory, edisi 3, Addison-Wesley.
Content	 Vector concepts, orthogonal curvilinear coordinates, and transformation rules between coordinate systems Scale factor, general equation of nabla, divergence, curl in orthogonal curvilinear coordinate System, properties of electric and magnetic vector fields, and applying spherical and cylindrical coordinates in two cases. Stokes' theorem and Gauss's theorem,

		and the sum of magnetic flux on closed surfaces,
		and applying Stokes' theorem to Ampere's law
		and electric emf.
	4.	Properties of continuity of electric field lines and
		magnetic field lines, nature of divergence and
		curl of electric and magnetic fields from static
		sources, Coulomb's Law, and Ampère's Law
	5.	Maxwell's four equations for sources of static
		electric and magnetic fields.
	6.	Electric and magnetic fields in materials
		(polarization and magnetization).
	7.	Bonded and free charges, orbital magnetic
		moments, and spin intrinsic orbital moments.
	8.	Ampere's and Gauss's laws for the interface
		between two mediums with different permittivity
		and permeability.
	9.	Sources of electric and magnetic fields measured
		electric and magnetic fields.
	10	Electric force, magnetic force and their
		conservative and non-conservative properties,
		Lorents force and equations of motion (trajectory)
		of particles in electric and magnetic fields
	11.	Charges and conductors that conduct electric
		current in a magnetic field, as well as interactions
		between two conductors
	12	The relationship between the electric field and
		the magnetic field
	13.	Maxwell's equations with sources change with
		time.
	14.	Electromagnetic waves, the properties of
		electromagnetic waves in a vacuum, and the
		properties of electromagnetic waves in materials
		are the boundary conditions of electric and
		magnetic fields for the interaction between
		electromagnetic waves and materials.
Examination forms	Cogr	nitive : Midterm Exam, Final Exam, Assignments
	Affec	etive :

15. MFF 2027 - Computational Physics

Module Name	Computational Physics
Code	MFF 2027
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Drs. Pekik Nurwantoro, M.S., Ph.D
Lecturer	Drs. Pekik Nurwantoro, M.S., Ph.D., Prof.,Agung Bambang Setio Utomo, S.U., Ph.D.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Numerical Method (MFF1024), Calculus I (MMM1101)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 4 - Special Skills. Able to design and carry out

	experiments/theoretical reviews, able to identify a physical problem based on the results of observations and experiments, and able to operate related technologies.
	PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	CO 1 : Students have the ability in Physics Skills, namely how to formulate and describe (to describe) the physical phenomena being studied and reveal important information in the physics problem through various tricks or specific mathematical procedures and utilizing various approaches (approximations).
	CO 2 : Students have the ability in Analytical Skills, namely how to pay attention to physics problems in detail, analyze problems and build arguments logically and carefully.
	CO 3 : Students have the ability in Investigative Skills, namely how to search for physics problems from various sources and references for research gain insight into an important piece of information.
	CO 4 : Students have the ability in Problem-Solving Skills, namely how to solve a problem with a structured solution (well-defined solutions), formulate a problem carefully, and try other approaches (approaches) to improve solving a challenging problem (challenging problems).
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
	Main References :
--------------	---
Reading list	1. R. H. Landau, M. J. Páez, C. C. Bordeianu, 2008, A Survey of Computational Physics, Introductory Computational Science, Princeton University Press, ISBN: 978-0-691-13137-5
	2. DeVries, P. L., & Hasbun, J. E., 2011, A first Course in Computational Physics, Jones & Bartlett Learning, Sudbury, MA.
	3. Koonin, S. E., & Meredith, D. G., 1990, Computational Physics, second edition, Perseus Book.
Content	 Explanation of some of the software and hardware that is potentially useful in carrying out the computing process, Applying the numerical integration method for the study of physical problems, which cannot be expressed in a feasible integral, and, therefore, in the form of an improper integral, uses several numerical quadrature methods. Applying numerical integration methods for the study of physical problems, which can be expressed in proper integral form using the Trapezoidal method, Simpson's method, or similar numerical integration methods. Computation for evaluating functions in the form of series, recurrence relations, and asymptotic forms, which are often involved in solving various physics problems Computation for evaluating matrices and sets of simultaneous linear equations in linear algebra is often involved in solving various physics problems. Application of the problem of finding the roots (roots finding) of non-linear functions based on the Bisection or Newton-Raphson method to solve physics problems: solving the eigenvalue problem in quantum mechanics, namely the search for energy levels of finite potential wells Applying the finite difference discretization method to solve physical problems: solving the potential wells

	eigenvalue problem in quantum mechanics,
	namely the search for the energy levels of a
	bound system with an arbitrary potential.
8.	The simple iteration or the Relaxation method for
	solving systems of simultaneous equations in
	several physical problems, such as electrical
	circuits.
9.	Continued use of the Gauss-Seidel iteration
	method for solving simultaneous systems of
	equations in several physics problems, such as
	in electric circuits.
10.	Applying a system of simultaneous linear
	equations with matrix representation in the initial
	conditions problem to solve some physics
	problems: solving the equations of motion of a
	pendulum or oscillation using the Euler method
	or the low-order Runge-Kutta method.
11.	Applying a simultaneous linear equation system
	with matrix representation in the initial conditions
	problem to solve some physics problems: solving
	the equations of motion of a pendulum or
	oscillation using the high-order Runge-Kutta
	method.
12.	Simultaneous application of a system of linear
	equations with matrix representation on boundary
	condition problems to solve several physics
	problems: solving Poisson and Laplace
	equations in 1 Dimension (1D) magnetic, an
	electric system for computing force, field, and
	electric potential as well as heat or heat
	propagation.
13.	Simultaneous application of systems of linear
	equations with matrix representation on boundary
	condition problems to solve several physics
	problems: solving Poisson and Laplace
	equations in 2 Dimensions or 3 Dimensions (2D
	or 3D) magnetic electric systems for computing
	force, field, and electric potential as well as heat
	or heat propagation.
14.	Simultaneous application of systems of linear
	equations with matrix representation on boundary
	condition problems to solve several physics
	problems: solving Poisson and Laplace
	equations in 2 Dimensions or 3 Dimensions (2D

	or 3D) magnetic electric systems for computing force, field, and electric potential as well as heat or heat propagation.
Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor : Affective :

16. MFF 2851 - Electronics Practicum**)

Module Name	Electronics Practicum**)
Code	MFF 2851
Semester(s) in which the module is taught	ODD/EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Eng. Ahmad Kusumaatmaja, S.Si, M.Sc.
Lecturer	Dr. Eng. Ahmad Kusumaatmaja, S.Si, M.Sc., Muhammad Arifin, S.Si, M.Sc., Ph.D.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	CBL (Case Based Learning): Pretest, Presentation of material and some display material, Hands-on experiments using available set-ups, Making reports
Workload	 Lectures : 1 x 50 = 50 minutes per week. Exercises and Assignments : 1 x 60 = 60 minutes per week. Private Learning : 1 x 60 = 60 minutes per week.
Credits points	1 SKS ~ 1.6 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Electronics (MFF1850*)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 3 - General Skills. Able to communicate the

	 results of problem studies and physical behavior both in writing and verbally, as well as being able to lead and collaborate at various levels of roles in a team. PLO 4 - Special Skills. Able to design and carry out experiments/theoretical reviews, able to identify a physical problem based on the results of observations and experiments, and able to operate related technologies. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar
	and new problems.
	various electrical components.
	CO 2 : Students can understand and compile electrical circuits on a breadboard.
	CO 3 : Students can practice the fundamental laws of electric circuits.
	CO 4 : Students can apply digital electronics concepts.
	CO 5 : Students can analyze experimental results, compare them with theory and provide conclusions from experiments.
	CO 6 : Students can explain experimental results orally and in writing.
Media employed	Offline (Experimental tool) and Online (Zoom Meeting, Google Meet, Google Classroom)

	Main Deferences .
	Main References :
	1. Buku panduan Praktikum Elektronika, Laboratorium Fisika Material dan Instrumentasi.
	Additional References :
Reading list	1. Sadiku, M.N.O., dan Alexander, C.K., 2016, Fundamentals of Electric Circuits, 5th edition, The McGrawHill Companies, Inc.
	2. Wang, M., 2010, Understandable Electric Circuits, The Institution of Engineering and Technology, London, United Kingdom.
Content	 ELK-1 Practical Transistor as a switch and multivibrator ELK-2 Practicum Operational Amplifier (Op-Amp) ELK-3 Practical Integrated Circuit (IC) ELK-4 Seven-Segment Practicum ELK-5 Practical Direct Current (DC) Circuits ELK-6 Arduino Practicum as a proximity and temperature sensor.
Examination forms	Cognitive : Pretest, Final test Psychomotor : Practicum Affective : Practicum Report, Attendance

17. MFF 2028 - Numerical Method Practicum**)

Module Name	Numerical Method Practicum**)
Code	MFF 2028
Semester(s) in which the module is taught	ODD/EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Pekik Nurwantoro
Lecturer	Dr. Pekik Nurwantoro., Dr. Fahrudin Nugroho., Dr. Iman Santoso., Dr. Sholihun
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	CBL (Case Based Learning): Pretest, Presentation of material and some display material, Hands-on experiments using available set-ups, Making reports
Workload	 Lectures : 1 x 50 = 50 minutes per week. Exercises and Assignments : 1 x 60 = 60 minutes per week. Private Learning : 1 x 60 = 60 minutes per week.
Credits points	1 SKS ~ 1.6 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Numerical Method (MFF1024)
Module objectives/intended learning outcomes PLO	 PLO 1 - Attitude. Have faith and fear of God Almighty, and apply good morals, ethics, initiative, and responsibility in completing their duties. PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics

	and related mathematical methods in finding solutions to physical problems.
	PLO 3 - General Skills. Able to communicate the results of problem studies and physical behavior both in writing and verbally, as well as being able to lead and collaborate at various levels of roles in a team.
	PLO 4 - Special Skills. Able to design and carry out experiments/theoretical reviews, able to identify a physical problem based on the results of observations and experiments, and able to operate related technologies.
	PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
	CO 1 : Students have the ability in Physics Skills, namely how to formulate and describe (to describe) the physical phenomena being studied and reveal important information in the physics problem through various tricks or specific mathematical procedures and utilize various approaches (approximations).
	CO 2 : Students have the ability in Analytical Skills, namely how to pay attention to physics problems in detail, analyze problems and build arguments logically and carefully.
Course outcomes (CO)	CO 3 : Students have the ability in Investigative Skills, namely how to search for physics problems from various sources and references to understand important information.
	CO 4 : Students have the ability in Problem-Solving Skills, namely how to solve a problem with a structured solution (well-defined solutions), formulate a problem carefully, and try other approaches (approaches) to improve solving a challenging problem (challenging problems).
Media employed	Offline (Experimental tool) and Online (Zoom Meeting,

	Google Meet, Google Classroom)
	Main References :
Reading list	 J. Kiusalaas, 2013, Numerical Methods in Engineering with Python 3, Cambridge University Press, ISBN 978-1-107-03385-6
	 Curtis F. Gerald dan Patrick O Wheatley, 2004, Applied Numerical Analysis, 7th Eddition, Addison Wesley
	 A.B. Setio Utomo, 2016, Pengantar Metode Komputasi untuk Sains dan Teknik, UGM Press, ISBN: 978-602-386-091-3.
	 Introduction to the Numerical Method Practicum and an explanation regarding the implementation of the practicum Practical activities for Medule 1: Introduction to
	the latest programming languages that support scientific computing, Python or Julia, and their ecosystems.
	 Module 2 practicum activities: Utilization of series and recurrence links to evaluate some typical functions.
	 Practical activities for Module 3: Calculation of root values of any function
Content	 Practical activities Module 4: Calculation of integral values with various forms of integrals and integral limits.
	 Module 5 practicum activities: Finite difference approach for approximating the derivative value of any function
	 Practical activity Module 6: Finite difference approach for solving differential equations (Euler method).
	 Practical activities Module 7: Evaluation of matrices for solving a set of simultaneous equations (Poisson's equations).

Examination forms	Cognitive : Psychomotor : Practicum Affective : Practicum Report
-------------------	--

18. MFF 2034 - Quantum Physics I

Module Name	Quantum Physics I
Code	MFF 2034
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Drs. Pekik Nurwantoro, M.S., Ph.D
Lecturer	Drs. Pekik Nurwantoro, M.S., Ph.D., Prof.,Agung Bambang Setio Utomo, S.U., Ph.D
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 3 x 50 = 150 minutes per week. Exercises and Assignments : 3 x 60 = 180 minutes per week. Private Learning : 3 x 60 = 180 minutes per week.
Credits points	3 SKS ~ 4.8 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Mechanics I (MFF1401)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various

	alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	CO 1 : Students have the ability in Physics Skills, namely how to formulate and describe (to describe) the physical phenomena being studied and reveal important information in the physics problem through various tricks or specific mathematical procedures and utilize various approaches (approximations).
	CO 2 : Students have the ability in Analytical Skills, namely how to pay attention to physics problems in detail, analyze problems and build arguments logically and carefully.
	CO 3 : Students have the ability in Investigative Skills, namely how to search for physics problems from various sources and references to understand important information.
	CO 4 : Students have the ability in Problem-Solving Skills, namely how to solve a problem with a structured solution (well-defined solutions), formulate a problem carefully, and try other approaches (approaches) to improve solving a challenging problem (challenging problems).
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References :
	1. D. J. Griffiths, 2018, Introduction to Quantum Mechanics 3rd Edition, Cambridge University Press, ISBN-10 : 1107189632, ISBN-13 : 978-1107189638
	2. Schwabl, F., 2007, Quantum Mechanics, 4th ed. Springer-Verlag, Berlin.

	1.	Background and early development of Quantum
		Mechanics and the potential role of quantum
		mechanics in the latest technological
		developments.
	2.	Introduction of several new concepts that can
		explain the experimental results of several
		physical phenomena regarding aspects of matter
		and waves
	3.	Introduction to the formal aspects of mathematics
		and the interpretation of several expressions in
		the formulation of quantum mechanics from the
		description of differential equations and the
		correspondence of their matrix expressions
		through linear algebra.
	4.	The introduction of several operators
		representing physical quantities, the Hermitian
		property, the probability density of finding a
		particle, the expected value of a physical
		quantity, the measurement uncertainty of a
		physical quantity, and the Heisenberg uncertainty
		concept. A brief introduction to the postulates of
Contont		quantum theory.
Content	5.	Infinite well potential system. The description of
		the one-dimensional bound model for a potential
		is in the form of a well of infinite depth.
	6.	Finite well potential system. An explanation of the
		one-dimensional model for a potential in the form
		of a well of finite depth.
	7.	Interpretation of quantum mechanical results. An
		explanation of the solution of a finite linear well
		potential system.
	8.	The linkage of the potential embankment system
		with reflection and transmission events.
		Explanation of the analogy of reflection and
		transmission events in optics with reflection and
		breakthrough phenomena of particles in quantum
	0	mechanics.
	9.	(continued) introduction and completion of the
		narmonic Oscillator system. Explanation of the
		une-ulmensional model for a parabolic potential
	10	with the solution of differential equations.
	10.	
		Uscillator system. Explanation of the one-
		aimensional model for potential in the form of

	parabolic with differential equation solution.
	11. Introduction to the algebraic solution of the
	harmonic oscillator and compare it to the results
	obtained through differential equations.
	Explanation of the emergence of energy
	quantization and quantum breakthrough
	12. Introduction and completion of the Atomic
	Hydrogen system. Explanation of the three-
	dimensional model for the Hydrogen Atom
	Explanation for reducing the reduction from a
	two-body system to a one-body system.
	13. Details the steps for solving the Schrodinger
	equation for Hydrogen atoms in the radial
	variable section. An explanation of the steps
	differential equations
	unerennial equations.
	relation to the completion of the Hydrogen atom
	in the variable angular section. An explanation of
	the emergence of orbital angular momentum
	operators in the Hydrogen atom problem and
	matters related to the conservation of orbital
	angular momentum and its guantization.
	Cognitive : Midterm Exam, Final Exam, Assignments
Examination forms	Psychomotor :
	Affective :

19. MFF 2024 - Mathematical Physics III

Module Name	Mathematical Physics III
Code	MFF 2024
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Dr.rer.nat. Muhammad Farchani Rosyid, M.Si.
Lecturer	Dr.rer.nat. Muhammad Farchani Rosyid, M.Si.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 3 x 50 = 150 minutes per week. Exercises and Assignments : 3 x 60 = 180 minutes per week. Private Learning : 3 x 60 = 180 minutes per week.
Credits points	3 SKS ~ 4.8 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Calculus I (MMM1101), Mathematical Physics I (MFF1020), Mathematical Physics II (MFF1021)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 4 - Special Skills. Able to design and carry out
	experiments/theoretical reviews, able to identify a

	physical problem based on the results of observations and experiments, and able to operate related technologies.
	CO 1 : Mastering and applying the basic concepts of typical functions.
	CO 2 : Mastering and applying special functions in solving simple math and physics problems.
	CO 3 : Understanding and skilled in using typical functions in solving math and physics problems.
	CO 4 : Mastering and applying the basic concepts of complex variable calculus
Course outcomes (CO)	CO 5 : Mastering and applying complex variable calculus in solving simple math and physics problems.
	CO 6 : Understanding and skill in using complex variable calculus to solve math and physics problems.
	CO 7 : Mastering and applying the basic concepts of complex variable calculus.
	CO 8 : Mastering and applying the calculus of variations in solving simple math and physics problems.
	CO 9 : Understand and be skilled in using the calculus of variations in solving math and physics problems.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
	Main References :
	 M.L. Boas, Mathematical Methods in The Physical Sciences 2nd ed, John Wiley & Sons, 1983.
Reading list	2. G.B. Arfken and H.J. Weber, Mathematical Methods for Physicists, Academic Press, 1995.
	 K.F. Rilley, M.P. Hobson, and S.J. Bence, Mathematical Methods for Physics and Engineering, 3rd ed. Cambridge University Press, 2006.

	1 Introduction and introduction to the particular
	function, the Gamma function
	2. Explanation of the Beta function
	3. Explanation of the Error function
	4. Practice guestions for typical functions (Gamma,
	Beta, and Error functions)
	5. Explanation of Legendre and Bessel functions
	6. Explanation of Hermite functions
	7. Practice questions for special functions
	(Legendre, Bessel, and Hermite Functions
	8. Introduction and introduction to complex variable
Content	functions, analytical functions
	9. Explanation of the Laurent series
	10. Introduction and introduction about residue
	11. Practice questions for complex variable functions
	(Analytical functions, Laurent series, and
	Residues)
	12. Explanation of the application of residues and 3D
	Taylor series
	13. An explanation of the calculus of variations
	14. Practice questions for typical functions of
	complex variables and calculus of variations
	Cognitive Midterm Exam Final Exam Assignments
Examination forms	Psychomotor:
	Affective :

20. MFF 2402 - Mechanics II

Module Name	Mechanics II
Code	MFF 2402
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Muh. Farchani Rosyid, M.Sc.
Lecturer	Dr. Muh. Farchani Rosyid, M.Sc., Dr. Bambang Murdaka Eka Jati, M.S.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Mechanics I (MFF1401)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various

	alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Can solve problems and cases of classical mechanics related to Euler-Lagrange Equation, Calculus of Variations, Hamilton's Principle, and Phase Spaces [PLO 2 and PLO 5]. CO 2 : Can solve problems and cases of classical mechanics related to Motion in a Centralized Field, Dynamics of Motion of Rigid Bodies about Any Axis, and Fluid Flow Dynamics [PLO 2 and PLO 5].
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References : 1. Fowles, G.R. & Cassidy, G.L., 2006: Analytical Mechanics, 6th edition, Thomson Brooks & Cole 2. Douglas, G., 2006: Classical Mechanics, 2nd edition, Cambridge University Press, Cambridge.

	1. Euler Lagrange's equations
	2. Constraints and Forces of Constraint
	3. Lagrange Function and Energy
	4. Calculus of Variation
	5. Hamilton's equation
	6. Phase Space
Content	7. Lionville Theorem and Recurrence
	8. Centered Field Motion: Kepler's Laws and Ellips
	Equations
	9. Motion in General and Special Central Forces
	10. Orbit Stability and Particle Scatter
	11. Rigid Body Dynamics and Euler's Equation,
	12. Principal Axis and Free Rotation in Rigid Bodies
	13. Fluid Flow and Heat Flow in Fluids
	14. Bernoulli's Law of Dynamics
	Cognitive : Midterm Exam, Final Exam, Quiz,
Examination forms	Assignments
	Psychomotor : Project Results
	Affective : Attendance

21. MFF 2031 - Relativity Theory

Module Name	Relaivity Theory
Code	MFF 2031
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Juliasih Partini
Lecturer	Dr. Juliasih Partini., Dr. Romy Hanang Setya Budhi,,
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Mechanics I (MFF1401)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 4 - Special Skills. Able to design and carry out experiments/theoretical reviews, able to identify a

	physical problem based on the results of observations and experiments, and able to operate related technologies.
	PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
	CO 1 : Students can understand the background knowledge of several natural phenomena that Classical Mechanics failed to explain, namely through solutions based on Newton's Laws which led to the introduction of the concepts of special relativity and general relativity.
Course outcomes (CO)	CO 2 : Students can identify several procedures for solving physics problems that require handling the concept of special relativity and general relativity and understanding the actual results of solving these problems.
	CO 3 : Students are skilled in problem-solving by presenting some simple examples of the application of special and general relativity in physics and the procedures for solving these problems.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)

Reading list	 Main References : 1. Lawden, D. F., 1982: An Introduction to Tensor Calculus, Relativity and Cosmology, edisi 3, John Wiley. 2. Ta-Pei Cheng, 2015, A college course on relativity and cosmology, Oxford Univ press. 3. Bernard Schutz, 2009, A First Course in General Relativity, Second Eds, Cambridge Univ Press.
Content	 Basic postulates of the particular theory of relativity, definition of inertial frames of reference, covariance of the laws of motion, in variation Lorentz transform, length contraction, time dilation, twin paradox Orthogonal Transformation, Cartesian Tensor Mechanics Special relativity: velocity, mass, and momentum vectors, Lorentz transformations for force Lagrange and Hamiltonian equations, Momentum energy tensor Relativistic electrodynamics: current-density-4, potential vector4 Lorentz transforms for electric and magnetic fields, Lorentz force, energy tensor of electromagnetic field momentum Introduction to general relativity, noninertial frames, equivalence principles, and spacetime geometry Spacetime geometry: Riemannian spaces and general tensor calculus General Theory of Relativity: equivalence principle, Einstein's law of gravity, the motion of free particles in a gravitational field, weak gravitational field, correspondence of Newton's law of gravity and General Relativity General Theory of Relativity: Metric spherical symmetry, Schwarzschild solution, planetary orbits, gravitational deflection of light beams 12.

	 General Theory of Relativity: a gravitational shift in spectral lines, black holes, gravitational waves 12. Cosmology: cosmological principle, spaces of constant curvature, metric Robenson-Walker, Hubble constant and deceleration parameter, the redshift of galaxies 13. Cosmology: cosmic dynamics, Einstein and de Sitter universe models, Friedmann universe, radiation model, particle and event horizon.
Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor : Affective :

22. MFF 2051 - Statistical Physics

Module Name	Statistical Physics
Code	MFF 2051
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Moh. Adhib Ulil Absor, M.Sc.
Lecturer	Dr. Moh. Adhib Ulil Absor, M.Sc., Dr. Harsojo, SU.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 3 x 50 = 150 minutes per week. Exercises and Assignments : 3 x 60 = 180 minutes per week. Private Learning : 3 x 60 = 180 minutes per week.
Credits points	3 SKS ~ 4.8 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Thermodynamics (MFF1053), Quantum Physics I (MFF2034*)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude

	them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	CO 1 : Students can understand and explain the basic concepts of statistical physics.
	CO 2 : Students can apply the basic concepts obtained in some instances.
	CO 3 : Students can identify a problem involving statistical physics and be able to solve the problem through the use of the methods and fundamental concepts that have been given previously.
	CO 4 : Students are skilled in solving physics cases through theoretical-mathematical or phenomenological approaches.
	CO 5 : Students can present, communicate and provide arguments on a concept/idea about statistical physics.
	CO 6 : Students can work in solving cases both independently and in groups.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
	Main References :
Reading list	1. Greiner W. Dkk., 1997, Thermodynamic and statistical mechanics, Springer, New York.
	2. Sears, F. W. dan G. L. Salinger, 1982, Thermodynamics, kinetic theory, and statistical thermodynamics, Addison-Wesley, Reading, Massachussetts.

	1. a. Basic concepts of statistical physics: Micro and
	macro states of many particle systems, the
	concept of phase divisions, equipartition theory,
	virial theorem, Gibbs' paradox, and examples of
	problems.,
	2. b. Ensembles in statistical mechanics:
	Microcanonical and canonical ensembles
	3. b. Ensembles in statistical mechanics: Canonical
	macro ensembles.
	4. b. Ensemble in statistical mechanics: The
	concept of the partition function, the relationship
	between entropy, and the phase space density.
	5. b. Ensembles in statistical mechanics:
	Observables as ensemble means, Relation of
	partition functions and thermodynamic quantities.
	6. c. Quantum Statistics: Pure state and mixed
Content	state, density operator, 3rd law of
	thermodynamics.
	7. c. Quantum Statistics: Symmetry of the multi-
	particle wave function, Explanation of the mid-
	semester exam (UTS) grid.
	8. d. Types of statistics: Maxwell-Boltzmann
	9. d. Types of statistics: Bose-Einstein
	10. d. Statistical types: Fermi-Dirac
	11. e. Applications of Statistical Physics: Plank
	Radiation
	12. e. Applications of Statistical Physics:
	Condensation of Bosons
	13. e. Applications of Statistical Physics: Fermi
	Gases
	14. e. Applications of Statistical Physics: Landau
	Diamagnetics and Pauli Paramagnetic
	Cognitive : Midterm Exam, Final Exam, Assignments
Examination forms	Psychomotor :
	Affective :

23. MFF 2062 - Lab Assignments**)

Module Name	Lab Assignments**)
Code	MFF 2062
Semester(s) in which the module is taught	ODD/EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Sc. Ari Dwi Nugraheni
Lecturer	Dr. Sc. Ari Dwi Nugraheni, Tim Laboratorium Fisika Dasar
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 1 x 50 = 50 minutes per week. Exercises and Assignments : 1 x 60 = 60 minutes per week. Private Learning : 1 x 60 = 60 minutes per week.
Credits points	1 SKS ~ 1.6 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Laboratory for General Physics II (MFF1014)
Module objectives/intended learning outcomes PLO	 PLO 1 - Attitude. Have faith and fear of God Almighty, and apply good morals, ethics, initiative, and responsibility in completing their duties. PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics

	and related mathematical methods in finding solutions to physical problems.
	PLO 3 - General Skills. Able to communicate the results of problem studies and physical behavior both in writing and verbally, as well as being able to lead and collaborate at various levels of roles in a team.
	PLO 4 - Special Skills. Able to design and carry out experiments/theoretical reviews, able to identify a physical problem based on the results of observations and experiments, and able to operate related technologies.
	PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
	CO 1 : Students can explain the concepts of mechanical phenomena and relate them to the basic concepts that have been obtained [PLO 1, PLO 2, PLO 4, PLO 5]
Course outcomes (CO)	CO 2 : Students can explain the concepts of heat phenomena and relate them to the basic concepts that have been obtained [PLO 1, PLO 2, PLO 4, PLO 5]
	CO 3 : Students can explain the concepts of electrical phenomena and relate them to the basic concepts obtained. [PLO 1, PLO 2, PLO 4, PLO 5]
	CO 4 : Students can explain the concepts that underlie optical phenomena and relate them to the basic concepts [PLO 1, PLO 2, PLO 4, PLO 5]
	CO 5 : Students can convey the results of their experiments in the form of written reports [PLO 3].
	CO 6 : Students can work individually or in groups in experiments [PLO 3].
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)

Reading list	Main References :
	1. Buku Panduan Praktikum Fisika Dasar Layanan
Content	 Measurement of the thermometer, air humidity, heat-electric equivalence, surface tension, the specific gravity of solids, Laplace constant, multimeter, OSK, incandescent lamp, earth magnet, transformer, Wheatstone bridge, mathematical swing, spring constant, modulus of elasticity of wire and rod, speed earth in air, physical swing, positive lens power, refractive index, microscope, light dispersion, positive and negative lens, photometer. Measurement of the thermometer, air humidity, heat-electric equivalence, surface tension, the density of solids, Laplace constant, multimeter, OSK, incandescent lamp, earth magnet, transformer, Wheatstone bridge, mathematical swing, spring constant, modulus of elasticity of wire and rod, velocity earth in the air, physical swing, positive lens power, refractive index, microscope, light dispersion, positive fan negative lens, photometer.
Examination forms	Cognitive : Psychomotor : Presentation, Assitance assemement Affective : Practicum Report, Attendance

24. MFF 2310 - Atomic and Molecular Physics

Module Name	Atomic and Molecular Physics
Code	MFF 2310
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Moh. Adhib Ulil Absor, S.Si., M.Sc., Ph.D
Lecturer	Moh. Adhib Ulil Absor, S.Si., M.Sc., Ph.D , Dr. Yosef R. Utomo, SU.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures: 3 x 50 = 150 minutes per week. Exercises and Assignments : 3 x 60 = 180 minutes per week. Private Learning : 3 x 60 = 180 minutes per week.
Credits points	3 SKS ~ 4.8 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	General Physics II (MFF1012), Quantum Physics I (MFF2034), Relativity Theory (MFF2031*), Statistical Physics (MFF2051)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various

	alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	CO 1 : Students have the ability in Physics Skills, namely how to formulate and describe (to describe) the physical phenomena being studied and reveal important information in the physics problem through various tricks or specific mathematical procedures and utilize various approaches (approximations).
	CO 2 : Students have the ability in Analytical Skills, namely how to pay attention to physics problems in detail, analyze problems and build arguments logically and carefully.
	CO 3 : Students have the ability in Investigative Skills, namely how to search for physics problems from various sources and references to understand important information.
	CO 4 : Students have the ability in Problem-Solving Skills, namely how to solve a problem with a structured solution (well-defined solutions), formulate a problem carefully, and try other approaches (approaches) to improve solving a challenging problem (challenging problems).
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)

	Main References :
	1. Krane, K., 1992, Modern Physics, John Willey and Sons.
	2. Haken, H. and Wolf, H. C., 1984, Atomic and Quantum Physics, Springer-Verlag, Berlin.
Reading list	3. Robert L. Carter, Molecular Symmetry and Group Theory, 1998, John Wiley & Sons, USA.
	4. Svanberg, 1992, Atomic and Molecular Spectroscopy, edisi 2, Springer-Verlag, New York.
	5. David J. Willock, Molecular Symmetry, 2009, John Wiley & Sons, UK.
Content	 Black Body Radiation, Photoelectric Effect Franck-Hertz experiment, Thomson Atomic Model Rutherford's Experiment, Bohr's Atomic Theory, and Weaknesses of the Old Quantum Theory Hydrogen Atom: Schrödinger equation, quantum numbers n,l,m Wavefunction interpretation, hope value, spin quantum number, coupling Complex Atoms: central field approximation and Pauli exclusion, electron configuration, coupling Fine structure, the sum of MJ values in one configuration, Zeeman effect, hyperfine structure Molecular Introduction: covalent bond and ionic bond HOMO and LUMO Symmetry and Chemical Bonds: orbital symmetries and overlap, valence-bond theory and hybrid orbitals Localized and delocalized molecular orbitals, - bonding, - bonding in aromatic ring systems Molecular Symmetry: Symmetry operations and elements Symmetry operation merging, point group of molecular crystal system, point group of molecular crystal system, point group

Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor : Affective :

25. MFF 2410 - Electromagnetics II

Module Name	Electromagnetics II
Code	MFF 2410
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Moh. Adhib Ulil Absor, S.Si., M.Sc., Ph.D
Lecturer	Moh. Adhib Ulil Absor, S.Si., M.Sc., Ph.D , Dr. Juliasih Partini, M.Si.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Mathematical Physics II (MFF1021), Electromagentics I (MFF2415)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various

	alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.	
	CO 1 : Students have the ability in Physics Skills to formulate and describe (to describe) electromagnetic phenomena and reveal important information contained in these physics problems through various tricks or specific mathematical procedures and utilize various approximations.	
Course outcomes (CO)	CO 2 : Students have the ability in Analytical Skills to pay attention to the problems of electromagnetic phenomena in detail (detail), analyze problems, and build arguments logically and carefully.	
	CO 3 : Students have the ability in Problem-Solving Skills to solve a problem related to electromagnetic phenomena with well-defined solutions, formulating a problem carefully.	
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)	
Reading list	 Main References : 1. Ronald K. Wangsness, 1986, Electromagnetic Fields, Edisi ke-2, Penerbit: John Wiley & Sons. 2. Griffiths, D. J., 1989, Introduction to Electrodynamics, Edisi ke-2, Penerbit: Prentice Hall. 3. Reitz, J.R., Milford, F. J. dan Christy, R. W., 1992, Foundations of Electromagnetic Theory, Edisi ke-3, Penerbit: Addition-Wesley. 	
	1.	Unique methods in electromagnetics: Reflection
---------	-----	--
		method
	2.	Solving Laplace's equation using the variable
		separation method in Cartesian coordinate
		systems and spherical coordinates
	3.	Shift flow meeting. General Maxwell's equations
		in differential and integral form. Boundary
		condition equations
	4.	Material (medium) isotropic linear,
		homogeneous. Poynting's theorem.
		Electromagnetic momentum.
	5.	Scalar potential and general vector potential.
		Scalar potential and vector potential for
		homogeneous isotropic linear substances. Terra
		transformation
	6.	Electromagnetic wave fields in non-conducting
	_	and conducting materials
	1.	Electromagnetic waves are fields within an
		electrically charged substance. Electromagnetic
	0	wave polarization
	8.	I he law of reflection and refraction. Reflection
Content		and refraction in normal incident cases.
		Reflection and refraction in oblique incidents.
	Q	The relationship between reflection refraction
	5.	and electromagnetic energy Reflection on the
		surface of the conductor. Propagation in the
		waveguide Fields in the waveguide Rectangular
		wavequide
	10.	The fields in the resonant cavity (resonator).
		Kirchhoff's law. Series RLC circuit
	11.	Transmission lines (transmission lines).
		Potentially delayed. Multipole expansion for an
		oscillating harmonic source.
	12.	Electric dipole radiation. Magnetic dipole
		radiation. Linear electric quadrupole radiation.
		Antenna
	13.	Introduction to the particular theory of relativity.
		Lorentz transformation. Lorentz transforms -4
		Vectors and general Tensors.
	14.	Lorentz Transforms, Vector-4, and General
		Tensor. Vector formulation - 4 for
		electromagnetics in vacuum

Examination forms	<i>Cognitive</i> : Midterm Exam, Final Exam, Assignments <i>Psychomotor</i> : <i>Affective</i> :

26. MFF 2033 - Modern of Physics Practicum**)

Module Name	Modern of Physics Practicum**)		
Code	MFF 2033		
Semester(s) in which the module is taught	ODD/EVEN semester		
Module designation	Undergraduate stage		
Person responsible for the module	Dra. Eko T. Sulistyani, M.Sc.		
Lecturer	Dra. Eko T. Sulistyani, M.Sc., Dr. Fahrudin Nugroho , Tim dosen Lab Atom & Inti		
Language	Indonesian		
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics		
Teaching methods	CBL (Case Based Learning): Pretest, Presentation of material and some display material, Hands-on experiments using available set-ups, Making reports		
Workload	 Lectures : 1 x 50 = 50 minutes per week. Exercises and Assignments : 1 x 60 = 60 minutes per week. Private Learning : 1 x 60 = 60 minutes per week. 		
Credits points	1 SKS ~ 1.6 ECTS		
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course		
Required and recommended prerequisites for joining the module	Laboratory for General Physics II (MFF1014)		
Module objectives/intended learning outcomes PLO	 PLO 1 - Attitude. Have faith and fear of God Almighty and apply good morals, ethics, initiative, an responsibility in completing their duties. PLO 2 - Knowledge. Able to explain theoretica concepts and principles of classical and moder physics and able to apply basic concepts of physic 		

	and related mathematical methods in finding solutions to physical problems.
	PLO 4 - Special Skills. Able to design and carry out experiments/theoretical reviews, able to identify a physical problem based on the results of observations and experiments, and able to operate related technologies.
	PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
	CO 1 : Students can understand the nature of existing microwave generators, namely klystrons, and can use them to measure the length of microwaves in a waveguide.
Course outcomes (CO)	CO 2 : Students can develop a mindset and explain how to understand the photoelectric effect/symptom experimentally and determine the work function of the photocell, the Planck constant value, and the maximum kinetic energy of the photoelectron.
	CO 3 : Students have the competence and ability to understand the working principle of the Michelson Interferometer. Students can use an interferometer to measure the wavelength of light in the spectrum of Cadmium/Sodium atoms. Students can also determine the effect of pressure on the refractive index of air/gas.
	CO 4 : Students understand the X-ray spectrum from an X-ray tube. Students can determine the distance between a crystal's Bragg planes and a material's absorption coefficient against X-rays.
	CO 5 : Students can explain Millikan's experiment, demonstrate the discrete nature of electric and elemental charges, and determine Avogadro's number by observing Brownian motion.
Media employed	Offline (Experimental tool) and Online (Zoom Meeting, Google Meet, Google Classroom)

	Main References :
	1. Panduan Praktikum Eksperimen Fisika Modern, Lab. Fisika Atom & Inti, FMIPA UGM, Yogyakarta, 2012.
	2. Melissinos, A.C., Experiments in Modern Physics, Acad. Press, New York, 1966, hal 18-27.
	3. Weidner, R.T., Elementary Modern Physics, Edisi ke-3, Allyn and Bacon Inc., 1980, hal 89-99.
	4. Harnwell, G.P. dan Livingood, J.J., Experiment Atomic Physics, Mc Graw Hill, 1933, hal. 214-223.
	5. Portis, A.M., Berkeley Physics Lab MO1, MO2, MO3, Mc Graw Hill.
Reading list	6. Weast, R.C., Handbook of Chemistry and Physics, Edisi ke-57, CRC Press, 1976.
	Additional References :
	1. Millikan, R.A., Electrons (+ and -), proptons, photons, neutrons, mesotrons and Cosmic Rays, 1974.
	2. Semat, H., Introduction to Atomic and Nuclear Physics, Holt, Rinehart & Winston, 1962, hal 146-186.
	3. Eisberg, R.M., Fundamentals of Modern Physics, John Wiley & Sons, Japan, 1961.
	4. Jenkins, F.A. & White, H.E., Fundamentals of Optics, Edisi ke-4, International Student Ed, Mc Graw Hill, Japan, 1981, hal 416 – 418.

	 Microwave Experiments, Photoelectric Effect Experiments, Michelson Interferometer Experiments, X-Ray Experiments, and Minster's Experiments
Content	 "Microwave Experiments, Photoelectric Effect Experiments, Michelson Interferometer Experiments, X-Ray Experiments, and Minster's Experiments Microwave Experiments, Photoelectric Effect Experiments, Michelson Interferometer Experiments, X-Ray Experiments, and Own Experiments
	 Microwave Experiments, Photoelectric Effect Experiments, Michelson Interferometer Experiments, X-Ray Experiments, and Minster's Experiments
	 Microwave Experiments, Photoelectric Effect Experiments, Michelson Interferometer Experiments, X-Ray Experiments, and Minster's Experiments
Examination forms	Cognitive : Pretest, Final test Psychomotor : Practicum Affective : Practicum Report, Attendance

27. MFF 2035 - Quantum Physics II

Module Name	Quantum Physics II		
Code	MFF 2035		
Semester(s) in which the module is taught	EVEN semester		
Module designation	Undergraduate stage		
Person responsible for the module	Drs. Pekik Nurwantoro, M.S., Ph.D		
Lecturer	Drs. Pekik Nurwantoro, M.S., Ph.D , Dr. M. F. Rosyid , ,		
Language	Indonesian		
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics		
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods		
Workload	 Lectures : 3 x 50 = 150 minutes per week. Exercises and Assignments : 3 x 60 = 180 minutes per week. Private Learning : 3 x 60 = 180 minutes per week. 		
Credits points	3 SKS ~ 4.8 ECTS		
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course		
Required and recommended prerequisites for joining the module	Quantum Physics I (MFF2034)		
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various 		

ills, the real ugh and
ills, s in ally
ills, om and
ving red lem to lem
and ogle
IM
10:

	1.	An explanation of the dynamics of quantum
		systems and the time-dependent Schrodinger
		equation
	2.	"
	3.	An explanation of the dynamics of quantum
		systems and the time-dependent Schrodinger
		equation
	4.	An explanation of the dynamics of quantum
		systems and the time-dependent Schrodinger
		equation
	5.	Introduction to the concept of orbital and spin
		angular momentum and the operator properties
		that represent them, as well as solving
		eigenvalue problems related to quantum systems
	6.	Introduction to the concept of sum or coupling of
		angular momentum and spin along with the
Content		Clebsch-Gordan coefficient
	7.	Some examples of solving physical systems of
		N-body or identical particles involving angular
		momentum coupling (L -S and J -J coupling)
	8.	The Introduction of several approach methods
	_	(approximations), namely the Variational method
	9.	Introduction of several approximations, namely
		the time-independent Perturbation method
	10.	Introduction of several approximations, namely
		the time-independent Perturbation method
	11.	Introduction of several approximation methods,
		the solution of molecular systems
	10	Introduction of the Suzuki. Tretter matrix
	12.	decomposition method for solving some
		dynamics problems in quantum systems
	13	The use of the Suzuki - Trotter matrix
	10.	decomposition method for solving some
		problems in quantum
	14.	Introduction to quantum scattering and Born
		approximation
	Coar	nitive : Midterm Exam. Final Exam. Assignments
Examination forms	Psychomotor:	
	Affec	tive :

28. MFF 2601 - Solid State Physics I

Module Name	Solid State Physics I	
Code	MFF 2601	
Semester(s) in which the module is taught	EVEN semester	
Module designation	Undergraduate stage	
Person responsible for the module	Moh. Adhib Ulil Absor, S.Si., M.Sc., Ph.D	
Lecturer	Moh. Adhib Ulil Absor, S.Si., M.Sc., Ph.D , Dr Ari Dwi Nugraheni, M.Sc.	
Language	Indonesian	
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics	
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods	
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week. 	
Credits points	2 SKS ~ 3.2 ECTS	
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course	
Required and recommended prerequisites for joining the module	Quantum Physics I (MFF2034)	
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze variou 	

	alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.	
	CO 1 : Students have the ability in Physics Skills, namely how to formulate and describe (to describe) the physical phenomena being studied and reveal important information in the physics problem through various tricks or specific mathematical procedures and utilizing various approaches (approximations).	
	CO 2 : Students have the ability in Analytical Skills, namely how to pay attention to physics problems in detail, analyze problems and build arguments logically and carefully.	
Course outcomes (CO)	CO 3 : Students have the ability in Investigative Skills, namely how to search for physics problems from various sources and references to understand important information.	
	CO 4 : Students have the ability in Problem-Solving Skills, namely how to solve a problem with a structured solution (well-defined solutions), formulate a problem carefully, and try other approaches (approaches) to improve solving a challenging problem (challenging problems).	
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)	
	Main References :	
Reading list	1. CKittel, Solid State Physic, Edisi 8, 2005.	
	2. R.K. Puri , V.K. Babbar, 1997, Solid State Physic, S. Chand & Company LTD, New Delhi.	

	1. Crystal Structure: (i)	Гуре and crystal lattice. (ii)
	Crystal directions and	l planes
	2. An explanation of the	dynamics of quantum
	systems and the time	-dependent Schrodinger
	equation	
	 X-Ray Diffraction: (i) (iii) Brillouin zone 	Bragg's law (ii) Back lattice
	 X-Ray Diffraction: (iii) geometric structure 	Brillouin zone (iv) Factor of
Content	 Bonds in crystals: (i) types (ii) Bonding ene bonds 	Interaction Forces and Bond argies in ionic and noble gas
	 Lattice Vibrations: (i) lattice vibrations, (ii) F 	One and two-dimensional Phonons
	7. Lattice Vibration: (iii) classical theory. Eins	Phonons (iv) Heat capacity, tein model. Debve model.
	 The theory of free ele Summerfields, guanti 	ctrons in metals: (i) um theory
	 Energy band theory: Kronig - Penney mod 	(i) Bloch's theorem (ii) el
	10. Energy band theory: mass of electrons (iv)	(iii) Speed and effective Classification of materials:
	metals, insulators, an	d semiconductors
	11. Energy band theory:	(iii) Speed and effective
	mass of electrons (iv)	Classification of materials:
	metals, insulators, an	d semiconductors
	mass of electrons (iv)	(III) Speed and effective
	metals insulators an	d semiconductors
	13. Semiconductors (i) Ir	a comiconductors
	14. Semiconductors:(i) E	xtrinsic Semiconductors.
Examination forms	ognitive : Midterm Exam, sychomotor : fective :	Final Exam, Assignments

29. MFF 2205 - Nuclear and Particle Physics I

Module Name	Nuclear and Particle Physics I
Code	MFF 2205
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dra. Eko T. Sulistyani, M.Sc.
Lecturer	Dra. Eko T. Sulistyani, M.Sc., Dr. Dwi Satya Palupi, S.Si, M.Si.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Quantum Physics I (MFF2034), Atomic and Molecular Physics (MFF2310), Relativity Theory (MFF2031*), Statistical Physics (MFF2051)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various

	alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
	 CO 1 : Explain the core properties, static and dynamic properties, and the basics of core detection methods. CO 2 : Explain the static properties of the nucleus: intrinsic angular momentum magnetic moment nuclear.
	CO 3 : Provides an understanding of the binding energy of the nucleus that causes the particles that
	make up the nucleus to bind to each other, the energy separating the particles.
	CO 4 : Explaining the binding energy of the Core: Semi-empirical mass formula: semi-empirical formula terms, mass parabola.
	CO 5 : Explaining the Nucleus Model: the electron proton model and its implications, the proton-neutron model, the Fermi Gas model.
Course outcomes (CO)	CO 6 : Explaining about Core Model: Shell model: core state based on shell model with well potential, oscillator potential, L.S coupling.
	CO 7 : Mention the particles that make up the universe and can classify the particles that make up the universe (Fermions: Leptons and Quarks; Tera Bosons: Photons, W and Z, Gluons).
	CO 8 : Describes the Particles that make up the Universe and Fundamental Interactions (Scalar Bosons: Higgs, Composite Particles/bonded states: Hadrons (Mesons and Baryons), Nuclei, Atoms).
	CO 9 : Explaining the Phenomenology of Nuclear and Particles: Low energy reactions, Scattering Reactions, Decay Reactions, and Bonded States.
	CO 10 : Explain the concepts of reaction latitude, decay rate, and transition energy.
	CO 11 : Explain Hadronization: plasma quarks – gluons become in a strongly interacting bound state.

	CO 12 : Explaining the I-Hadron Bound State: Baryon,
	baryon wave function, magnetic moment, baryon mass.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
	Main References :
	1. Arya, Atam H.,1966,Fundamental of Nuclear Physics,Allen and Bacon Inc.
	2. Martin,R Brian, 2006, Nuclear and particle Physics, An Introduction, John Wiley & Sons, Ltd, England.
Reading list	3. Krane.KS, 1988, Introductory Nuclear Physics, John Wiley & Sons.
	4. Meyerhoff,W.E.,1967, Elemen of Nuclear Physics, McGraw Hill Book Co.
	5. David Griffiths, 2004: Introduction to elementary particles, Wiley-VCH.
	1. Nuclear mass, nuclear radius, angular momentum Model of the proton-electron, proton neutron, nomenclature
	 Crystal Structure: (ii) Crystal direction and plane (iii) Crystal structure of SC, BCC, FCC, diamond, and HPC
	 Nuclear binding energy, Average binding energy, stability of the nucleus, Proton splitting energy,
Content	 4. Semi-empirical mass formula: semi-empirical formula terms, mass parabola.
Content	5. The proton-electron model and its implications, the proton-neutron model, and the Fermi Gas model
	 Shell model: core state based on petal model with well potential, oscillator potential, and L.S. coupling.
	 7. 8. Fermions: Leptons and Quarks; Tera bosons: Photons, W and Z, Gluon
	 Scalar Bosons: Higgs, Composite/bonded state particles: Hadrons (Mesons and Baryons),

	 Nuclei, Atoms. 10. Low energy reactions, Scattering Reactions, Decay Reactions, and Bound States 11. Concept of reaction latitude, decay rate, and transition energy. Experiments and detection in Core and particles. 12. Hadronization: plasma quarks – gluons into a strongly bonded state of interaction, Analogy with the hydrogen atom: a review of the Schrodinger equation of hydrogen atoms, positronium, quarkonium, light mesons. 13. Baryon, baryon wave function, magnetic moment, baryon mass.
Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor : Affective : Attendance

30. MFF 2313 - Atomic and Molecular Physics Experiments

Module Name	Atomic and Molecular Physics Experiments
Code	MFF 2313
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Iman Santoso
Lecturer	Dr. Iman Santoso, Dr.Eng. Fahrudin Nugroho., Ikhsan Setiawan, M. Si., Elida Istiqomah, M. Sc.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	CBL (Case Based Learning): Pretest, Presentation of material and some display material, Hands-on experiments using available set-ups, Making reports
Workload	 Lectures : 1 x 50 = 50 minutes per week. Exercises and Assignments : 1 x 60 = 60 minutes per week. Private Learning : 1 x 60 = 60 minutes per week.
Credits points	1 SKS ~ 1.6 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Atomic and Molecular Physics (MFF2310)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 3 - General Skills. Able to communicate the

	results of problem studies and physical behavior both in writing and verbally, as well as being able to lead and collaborate at various levels of roles in a team.
	PLO 4 - Special Skills. Able to design and carry out experiments/theoretical reviews, able to identify a physical problem based on the results of observations and experiments, and able to operate related technologies.
	PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
	CO 1 : Students can carry out experiments on the e/m ratio using an electro-magnet setup, analyze data, and provide conclusions from this experiment.
Course outcomes (CO)	CO 2 : Students can conduct experiments with Franck- Hertz to show the discrete nature of charge e and can analyze data and provide conclusions from this experiment.
	CO 3 : Students can conduct experiments on Atomic Spectroscopy using the Hilger spectrometer and can analyze data and provide conclusions from this experiment.
	CO 4 : Students can carry out electron spin resonance (ESR) experiments using electromagnetic setups and are also able to determine the value of the gyromagnetic factor of organic materials. Students are also able to analyze data and provide conclusions from this experiment.
	CO 5 : Students can carry out the Zeeman Effect experiment to show the influence of magnetic fields on atomic emission spectra. They can analyze data and provide conclusions from this experiment based on the coupling of angular, angular momentum, and spin of an atom.
Media employed	Offline (Experimental tool) and Online (Zoom Meeting, Google Meet, Google Classroom)

	Main References :
	1. Melissinos, A. C., 2003: Experiments in Modern Physics, Academic Press.
Reading list	2. Tim Pengampu, 2016, Petunjuk Praktikum Fisika Atom dan Molekul, Lab. Fisika Atom-Inti.
	3. Sayer, M dan A Mansingh, 2000. Measurement Instrumentation and Experiment Design in Physics and Engineering, Prentice Hall, New Delhi.
Content	 (1). An e/m experiment determines an electron's charge-to-mass ratio using electric and magnetic fields. (2). The Franck-Hertz experiment demonstrated the discrete nature of electrons using high voltages. (3). Atomic Spectroscopy Experiment, showing the emission and absorption of an atomic gas using a Hilger spectrometer. (4). Electron spin resonance (ESR) experiments using an electromagnet setup are also capable Intrinsic angular momentum, magnetic moment, core states, core states (1). Experiment e/m, determine the ratio of charge and mass of electrons using electric and magnetic fields. (2). The Franck-Hertz experiment demonstrated the discrete nature of electrons using high voltages. (3). Atomic Spectroscopy Experiment, showing the emission and absorption of an atomic gas using a Hilger spectrometer. (4). Electron spin resonance (ESR) experiments using an electromagnet setup are also able to (1). An e/m experiment determines an electron's charge-to-mass ratio using electric and magnetic fields. (2). The Franck-Hertz experiment demonstrated the discrete nature of electrons using high voltages. (3). Atomic Spectroscopy Experiment determines an electron's charge-to-mass ratio using electric and magnetic fields. (2). The Franck-Hertz experiment demonstrated the discrete nature of electrons using high voltages. (3). Atomic Spectroscopy Experiment, showing the emission and absorption of an atomic gas using a Hilger spectrometer. (4). Electron spin resonance (ESR) experiment, showing the emission and absorption of an atomic gas using a Hilger spectrometer. (4). Electron spin resonance (ESR) experiments using an electromagnet setup are also capable

Examination forms	Cognitive : Pretest, Final test Psychomotor : Practicum Affective : Practicum Report, Attendance
-------------------	--

31. MFF 2060 - Research Methodology and Scientific Communication**)

Module Name	Research Methodology and Scientific Communication**)
Code	MFF 2060
Semester(s) in which the module is taught	ODD/EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Fahrudin Nugroho
Lecturer	Dr. Fahrudin Nugroho., Prof. Dr. Eng. Kuwat Triyana, M.Si.
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 3 x 50 = 150 minutes per week. Exercises and Assignments : 3 x 60 = 180 minutes per week. Private Learning : 3 x 60 = 180 minutes per week.
Credits points	3 SKS ~ 4.8 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Minimum 50 Credits
Module objectives/intended learning outcomes PLO	 PLO 3 - General Skills. Able to communicate the results of problem studies and physical behavior both in writing and verbally, as well as being able to lead and collaborate at various levels of roles in a team. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Students can understand and apply standard research procedures. CO 2 : Students can produce valid data and communicate their research results in oral and written forms, free from scientific and ethical issues. Offline (LCD, PPT Slide, Whiteboard, Laptop) and
Media employed	Online (Zoom Meeting, Google Meet, Google

125 | Module Handbook - Bachelor of Physics

	Classroom)
Reading list	 Main References : 1. Jean-Luc Lebrun, 2007, Scientific Writing, World Scientific Publishing. 2. Blackwell J & Martin, J., 2011, A scientific approach to scientific writing, Springer.
Content	 Introduction Collective work in Science : (1). Science Character: Generality (2). How to Learn Science (3). How to Develop Science Introduction to Scientific Research Concepts: The Role of Students in Research Topic research and literature search: Log Book, Techniques for reading and selecting literature. Introduction of the stages of scientific research: (1). Background interests and fields mastered, (2). Advisory Lecturer according to the topic of work planning, (3). Literature Search, (4). Information Gathering, (5). Scientific Formulation. Preparing Research Proposals: Introduction, Background, Problems, Objectives, Benefits, Research Methods. Introduction to scientific research concepts: Observation, Problem Definition, Hypothesis Generation, Testing, Theory Results, Confirmation. Level of quality and trust in scientific articles: Identifying the place of publication Scientific Writing: Saves reader's memory, Keeps reader's attention, saves speaker's time. Scientific Writing: Keeping readers motivated, Bridging gaps with readers, Creating storylines, Creating reading momentum, saving reader energy Structure of scientific articles: Introduction, Methods, Results and Discussion, Conclusions, References / Bibliography. Ethics in writing: Plagiarism, Avoiding Fabrication

	and Falsification, Manipulation, Procedures for referring and paraphrasing 14. Ethics in writing: Plagiarism, Avoiding Fabrication and Falsification, Manipulation, Procedures for referring and paraphrasing
Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor : Affective :

32. MFF 3015 - Philosophy of Physics

Module Name	Philosophy of Physics
Code	MFF 3015
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Arief Hermanto
Lecturer	Dr. Arief Hermanto
Language	Indonesian
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	 PLO 1 - Attitude. Have faith and fear of God Almighty, and apply good morals, ethics, initiative, and responsibility in completing their duties. PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 3 - General Skills. Able to communicate the results of problem studies and physical behavior both in writing and verbally, as well as being able to lead and collaborate at various levels of roles in a team. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.

Course outcomes (CO)	CO 1 : Students can express both orally and in writing various topics quite deep in the theory of relativity, quantum theory, and the fundamental differences between the two based on literature studies, not with mathematical equations but with the qualitative power of logical-analytic verbal expressions.		
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)		
Reading list	Main References : 1. R B Angel, 1980, Relativity : the theory and its philosophy Pergamon. 2. S Cannavo, 2009, Quantum theory : a philosopher's overview, SUNY. 3. A Hermanto, 2012, Bahan ajar Filsafat Fisika, FMIPA-UGM.		
Content	 Logic Logic Logic Relativity relativity relativity Relativity Relativity Relativity Logic and Relativity Quantum Quantum Comparison and Relativity Comparison of Quantum and Relativity Quantum Comparison and Relativity Quantum Comparison and Relativity Comparison of Quantum and Relativity Quantum Comparison and Relativity 		
Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor : Affective :		

33. MFF 3411 - Modern of Optics

Module Name	Modern of Optics	
Code	MFF 3411	
Semester(s) in which the module is taught	ODD semester	
Module designation	Undergraduate stage	
Person responsible for the module	Dr. Iman Santoso	
Lecturer	Dr. Iman Santoso., Dr. Mitrayana	
Language	Indonesian	
Relation to curriculum	Compulsory Courses for undergraduate program in Bachelor of Physics	
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods	
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week. 	
Credits points	2 SKS ~ 3.2 ECTS	
Requirements according to the	Registered in this course	
examination regulations	Minimum 75% attendance in this course	
Required and recommended prerequisites for joining the module	Waves (MFF1405), Quantum Physics I (MFF2034)	
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems. 	
Course outcomes (CO)	 CO 1 : Students can explain and solve cases in geometric optics. CO 2 : Students can explain and solve cases in physical optics. 	
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)	

Reading list	 Main References : 1. Eugene Hecht (and Alfred Zajac), Optics, fourth (fifth) ed., Addison-Wesley.California, 2001. 2. Peatross and Ware, Physics of light and optics, Brighram Young University, 2013. 3. M.P. Vaughan, Lecture Notes on Optics PY3101, University College Cork, 2014. 	
Content	 INTRODUCTION: History of the Development of Optics, Electromagnetic Fields. Review material from Mathematical Physics: Vector Algebra (inner product, cross product, integral divergence theorem, Stokes integral theorem, divergence, rotation, complex algebra, Euler notation, Phasor, differential wave equations. BASICS OF GEOMETRY OPTICS: Introduction, Branches of Optics, The Nature of Light, Light Rays (B.C), Reflection and Refraction (Snell's Law), Total Internal Reflection, Characteristics of a Clear Medium, Minimum Deviation, Minimum Deviation and Type of Material, Light Dispersion, Refraction In Plan-Parallel Glass, Huygens' Principle on Reflection, Fermat's Principle on Refraction, Optical Path Length (PLO). 4. FRESNEL EQUATION: Electric Field Perpendicular to the Incident Plane, Electric Field Parallel to the Incident Plane, Interpretation of the Fresnel Equation, Reflectance, and 	
	 Transmittance. 5. 5. GEOMETRY OPTICS (Paraxial Optical): Spherical Reflector Surface (R.S), Single Spherical Reflector Surface. 6. THIN LENSES: Introduction, Types of Lenses, Geometry, Characteristics, Focal Planes, Shadow Formation Equations, Image Formation, Properties and Magnification of Shadows, Lateral Magnification, Magnification of Three Dimensional Objects, Sign Conventions, Position of Convex Lens Shadows, Three-dimensional Image Orientation, Lens combination. 7. A. THICK LENSES: Geometry, Characteristics, Beam State, Nodal Points and Optical Centers, Light Propagation in Thick Lenses. B. 	

		ABERRATION: Introduction, Types of
		Monochromatic Aberration
	8.	Wave superposition: Algebraic method, Complex
		method, Phasor sum, Standing wave, Beats,
		Group velocity, Fourier analysis, Fourier integral,
		Pulse and wave packets, Optical bandwidth.
	9.	Polarization of Light: Properties of polarized light,
		Polarisator, Dichroism, Birefringence, Scattering
		and polarization, Polarization by reflection,
		Retarders, Circular Polarization, Light
		Polarization, Polychromatic, Optical Activity,
		Optical Modulator, Mathematical description of
		polarization.
	10.	Interference: Overview, Interference Terms,
		Wavefront-splitting Interferometer. Amplitude
		splitter interferometer, Double-beam dielectric
		film interference, Multiple-beam interference,
		Fabry-Perot interferometer, Interferometer
		application.
	11.	Diffraction: Preliminary review, Fraunhofer
		Diffraction, Fresnel Diffraction, Kirchoff's Scalar
		Diffraction Theory, Limited Wave Diffraction
	12.	Fourier Optics: Introduction, Fourier Transform,
		Optical Applications
	13.	Fundamentals of Coherence Theory:
		Introduction, Visibility, Common coherence
		functions and degrees of coherence, Steller's
		coherence and interferometer, Lasers and Laser
		light.
	14.	Fundamentals of Coherence Theory:
		Introduction, Visibility, Common coherence
		functions and degrees of coherence, Steller's
		coherence and interferometer, Lasers and Laser
		light.
	Cogn	iitive : Midterm Exam, Final Exam
Examination forms	Psyc	homotor:
	Affec	tive :

34. MFF 3206 - Nuclear and Particle Physics II

Module Name	Nuclear and Particle Physics II		
Code	MFF 3206		
Semester(s) in which the module is taught	ODD semester		
Module designation	Undergraduate stage		
Person responsible for the module	Dra. Eko Tri Sulistyani, M. Sc.		
Lecturer	Dra. Eko Tri Sulistyani, M. Sc., Mirza Satriawan, S. Si., M. Sc., Ph. D.		
Language	Indonesian		
Relation to curiculum	Compulsory Courses for undergraduate program in Bachelor of Physics		
Teaching methods			
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week. 		
Credits points	2 SKS ~ 3.2 ECTS		
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course		
Required and recommended prerequisites for joining the module	Nuclear and Particle Physics (MFF2205)		
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems. 		
Course cutcomes (CO)	 CO 1 : Describes the interaction of radiation with matter and uses it as a method for detecting nuclei. CO 2 : Describe radioactivity CO 3 : Explain the general properties of decay and alpha, beta and gamma decay. CO 4 : Explain the mechanism of weak and strong interaction based on old models: Yukawa's meson model for solid interactions and Fermi's weak interaction model. 		

	 CO 5 : Explain the mechanism of weak and strong interactions based on new models: the quark and QCD models for solid interactions and the Weinberg-Salam electroweak model for interactions. CO 6 : Explaining Lagrangan's formalism in elementary particle physics. CO 7 : Describe the various continuous symmetries in Lagrangian and their relationship to the continuous flow (Noether's theorem). CO 8 : Qualitatively explain discrete symmetry in elementary particle physics, parity symmetry, charge conjugation, and time reversal (PCT). CO 9 : Using Feynman diagrams qualitatively to analyze various kinds of elementary particle reactions. CO 10 : Explain in outline the content of the particles and the properties of the particles in the standard model. CO 11 : Describe the process of mass formation in the Higgs mechanism qualitatively.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	 Main References : Arya, Atam H.,1966, Fundamental of Nuclear Physics, Allen and Bacon Inc. Martin, R Brian, 2006, Nuclear and particle Physics, An Introduction, John Wiley & Sons, Ltd, England. Krane, KS, 1988, Introductory Nuclear Physics, John Wiley & Sons. Meyerhoff, W.E., 1989, Elemen of Nuclear Physics, McGraw Hill Book Co. David Griffiths, 2004: Introduction to elementary particles, Wiley-VCH.

	1. Interaction of Radiation with matter
	2. Radioactivity
	3. Alpha decay
	4. Gamma decay
	5. Beta decay
	6. Weak Interaction and strong interaction
	according to old theory
Content	7. Weak interaction and strong interaction
	according to the strong theory
	8. Lagrangian formalization for elementary particle
	physics
	9. Discrete Symmetry in Elementary Particle
	physics
	10. Standard Models
	11. Feynmann diagrams
Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor : Affective : Attendance

35. MFF 3608 - Solid of Physics II

Module Name	Solid of Physics II
Code	MFF 3608
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Moh. Adhib Ulil Absor, S.Si., M.Sc., Ph.D
Lecturer	Moh. Adhib Ulil Absor, S.Si., M.Sc., Ph.D , Prof., Dr. Harsojo, SU, M.Sc. , ,
Language	Indonesian
Relation to curiculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Solid State Physics I (MFF2601)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.

Course cutcomes (CO)	 CO 1 : Students have the ability in Physics Skills, namely how to formulate and describe (to describe) the physical phenomena being studied and uncover important information contained in the physics problem through various tricks or certain mathematical procedures and utilizing various approximations. CO 2 : Students have the ability in Analytical Skills, namely how to pay attention to physics problems in detail, analyze problems and build arguments logically and carefully. CO 3 : Students have the ability in Investigative Skills, namely how to search for physics problems from various sources and references to understand important information. CO 4 : Students have the ability in Problem-Solving Skills, namely how to solve a problem with a structured solution (well-defined solutions), formulate a problem carefully, and try other approaches (approaches) to improve solving a challenging problem (challenging problems).
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References : 1. CKittel, Solid State Physic, Edisi 8, 2005. 2. R.K. Puri , V.K. Babbar, 1997, Solid State Physic, S. Chand & Company LTD, New Delhi.

	6.	Elementary excitation: Plasmon, polariton,
Content	6.	Elementary excitation: Plasmon, polariton,
	7.	Elementary excitation: Plasmon, polariton,
	0	polaron
	0.	current and penetration depth, required field and
		temperature, type I and typed II superconductors,
	9	thermodynamic and optical properties. Superconductivity: perfect diamagnetism, super
	01	current and depth of penetration, critical field and
		temperature, type I and type II superconductors,
	10.	Superconductivity: perfect diamagnetism, super
		current and penetration depth, required field and
		temperature, type I and typed II superconductors, thermodynamic and optical properties
	11.	The Phenomenon of Magnetic Resonance
	12	The Phenomenon of Magnetic Resonance
	13.	Physical phenomena in surface systems,
		interfaces, and nanostructures.
	14.	Physical phenomena in surface systems,
		interfaces, and nanostructures.
Examination forms	Cogr Psyc Affed	nitive : Midterm Exam, Final Exam, Assignments homotor : : tive :

36. MFF 3204 - Nuclear Physics Laboratory**)

Module Name	Nuclear Physics Laboratory**)
Code	MFF 3204
Semester(s) in which the module is taught	ODD/EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Iman Santoso
Lecturer	Dr. Iman Santoso., Dr.Eng. Fahrudin Nugroho., Ikhsan Setiawan, M. Si, Eko Tri Sulistyani, M. Sc.
Language	Indonesian
Relation to curiculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	CBL (Case Based Learning): Pretest, Presentation of material and some display material, Hands-on experiments using available set-ups, Making reports
Workload	 Lectures : 1 x 50 = 50 minutes per week. Exercises and Assignments : 1 x 60 = 60 minutes per week. Private Learning : 1 x 60 = 60 minutes per week.
Credits points	1 SKS ~ 1.6 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Nuclear and Particle Physics (MFF2205)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 3 - General Skills. Able to communicate the results of problem studies and physical behavior both in writing and verbally, as well as being able to lead and collaborate at various levels of roles in a team. PLO 4 - Special Skills. Able to design and carry out experiments/theoretical reviews, able to identify a physical problem based on the results of observations and experiments, and able to operate related technologies. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude

	them for appropriate decision-making, both in familiar
Course cutcomes (CO)	 CO 1 : Students can carry out nuclear detection using a gas detector (Geiger-Mueller Counter), analyze data, and provide conclusions from this experiment. CO 2 : Students can carry out alpha spectroscopy experiments to detect alpha particles decaying from radioactive sources using Solid State (Nal TI) detectors and can analyze data and provide conclusions from this experiment. CO 3 : Students can conduct beta-ray spectroscopy experiments in terms of detecting beta particles decaying from radioactive sources using a semiconductor (silicon) detector or an organic antransine scintillator detector and can analyze data and provide conclusions from this experiment. CO 4 : Students can perform alpha-ray spectroscopy experiments in detecting Gamma particles decaying from radioactive sources using Solid State (Nal TI) detectors. They can analyze data and provide conclusions from this experiment. CO 5 : Students can perform X-ray spectroscopy experiments to detect discrete X-ray series emitted from radioactive sources using Solid State (Nal TI) detectors. They can analyze data and provide conclusions from this experiment.
Media employed	Offline (Experimental tool) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	 Main References : 1. Melissinos, A. C., 2003: Experiments in Modern Physics, Academic Press 2. Tim Pengampu, 2016: Petunjuk Praktikum Fisika Inti, Lab. Fisika Atom-Inti 3. Tsoulfanidis, N., 2015: Measurement and Detection of Radiation, McGraw-Hill. 4. ORTEC AN34 Laboratory Manual, 2020: Experiment in Nuclear Science Laboratory, 4th ed.
A	. 1. Experiment with Nuclear detection methods
----	--
	using GM counters, understand how GM
	counters work, and determine the absorption of
	materials against beta and gamma nuclear
	radiation.
	2. Alpha Spectroscopy Experiment, detecting
	alpha particles decaying from a radioactive
	source using a Solid State (Nal TI) detector.
	3. Beta Spectroscopy Experiment, detecting
	beta particles decaying from a radioactive
	source using a semiconductor (silicon) detector
	or anthracin organic scintillator detector.
	4. Gamma-ray spectroscopy experiment,
	detecting Gamma particles decaying from a
	radioactive source using a Solid State (Nal TI)
	detector.
	5. X-ray spectroscopy experiment, detecting
	discrete X-ray series emitted from a radioactive
	source using a Solid State (Nal TI) detector.
В.	1. Experiment with Nuclear detection methods
	using GM counters, understand how GM
	counters work, and determine the absorption of
	materials against beta and gamma nuclear
	radiation.
	2. Alpha Spectroscopy Experiment, detecting
	alpha particles decaying from a radioactive
	source using a Solid State (Nal TI) detector.
	3. Beta Spectroscopy Experiment, detecting beta
	particles decaying from a radioactive source
	using a semiconductor (silicon) detector or
	anthracin organic scintillator detector.
	4. Gamma-ray spectroscopy experiment,
	detecting Gamma particles decaying from a
	radioactive source using a Solid State (Nai 11)
	delector.
	b. A-ray spectroscopy experiment, detecting
	uscrete A-ray series emitted from a radioactive
	1 Experiment with Nuclear detection methods
0.	using GM counters understand how GM
	counters work and determine the absorption of
	materials against beta and gamma nuclear
	radiation
	2. Alpha Spectroscopy Experiment. detecting
	B. C.

	alpha particles decaying from a radioactive
	source using a Solid State (Nal TI) detector.
	3. Beta Spectroscopy Experiment, detecting beta
	particles decaying from a radioactive source
	using a semiconductor (silicon) detector or
	anthracin organic scintillator detector.
	4. Gamma-ray spectroscopy experiment,
	detecting Gamma particles decaying from a
	radioactive source using a Solid State (Nal TI)
	detector.
	5. X-ray spectroscopy experiment, detecting
	discrete X-ray series emitted from a radioactive
	source using a Solid State (Nal TI) detector.
	D. 1. Experiment with Nuclear detection methods
	using GM counters, understand now GM
	counters work and determine the absorption of
	radiation
	2 Alpha Spectroscopy Experiment detecting
	2. Alpha Spectroscopy Experiment, detecting
	source using a Solid State (Nal TI) detector
	3 Beta Spectroscopy Experiment detecting beta
	particles decaying from a radioactive source
	using a semiconductor (silicon) detector or
	anthracin organic scintillator detector
	4 Gamma ray spectroscopy experiment
	detecting Gamma particles decaving from a
	radioactive source using a Solid State (Nal TI)
	detector.
	5. X-ray spectroscopy experiment, detecting
	discrete X-ray series emitted from a radioactive
	source using a Solid State (Nal TI) detector.
	E. "1. Experiment with nuclear detection methods
	using GM counters, understand how GM
	counters work, and determine material
	absorption of beta and gamma nuclear radiation.
	F. Response
	Cognitive - Protest Final test
Examination forms	Psychomotor : Practicum
	Affective : Practicum Report, Attendance

37. MFF 3602 - Solid State Physics Laboratory**)

Module Name	Solid State Physics Laboratory**)
Code	MFF 3602
Semester(s) in which the module is taught	ODD/EVEN semester
Module designation	Undergraduate stage
Person responsible for the	Dr. Chotimah
	Dr. Obetierske Dressenskerk Manders' M.O.
	Dr. Chotiman., Devy Pramudyan Wardani, M.Sc.
Language	Indonesian
Relation to curiculum	Compulsory Courses for undergraduate program in Bachelor of Physics
Teaching methods	CBL (Case Based Learning): Pretest, Presentation of material and some display material, Hands-on experiments using available set-ups, Making reports
Workload	 Lectures : 1 x 50 = 50 minutes per week. Exercises and Assignments : 1 x 60 = 60 minutes per week. Private Learning : 1 x 60 = 60 minutes per week.
Credits points	1 SKS ~ 1.6 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended	
prerequisites for joining the module	Solid State Physics I (MFF2601)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course cutcomes (CO)	 CO 1 : Students can explain the concepts underlying physical phenomena in solid materials and their applications in related technologies. CO 2 : Students can explain the experimental design to observe a physical phenomenon and relate it to the basic concept. CO 3 : Students can carry out experiments on a phenomenon in solid materials and analyze their

Media employed	 experiments' results. CO 4 : Students can convey the results of their experiments both in the form of written and oral communication. CO 5 : Students can work individually and in groups in experiments and present the results obtained. Offline (Experimental tool) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References : 1. Buku Panduan Praktikum Fisika Zat Padat
Content	 Determination of the Diffusion Rate of Salt Molecules by Laser Deflection Measurement Power Diode/LED Gap Measurement The response I : Practical Topic in Weeks 1 - 2 Hall Assignment Measurement and Load Carrier Meeting Measurement of Magnetic Susceptibility with the Gouy Method 2. Alpha Spectroscopy Experiment, detecting alpha particles that decay from radioactive sources using a Solid State (Nal TI) detector. Test Current-Voltage Characteristics of Silicon Solar Cells Response II Practicum Topics in Weeks 4-6
Examination forms	Cognitive : Pretest, Final test Psychomotor : Practicum Affective : Practicum Report, Attendance

38. MFG 1101 - Introduction to Geophysics

Module Name	Introduction to Geophysics
Code	MFG 1101
Semester(s) in which the module is taught	ODD semester
Module designation	
Person responsible for the module	Dr. Eddy Hartantyo, M.Si.
Lecturer	Dr. Eddy Hartantyo, M.Si., Dr. Wahyudi, MS., Drs. Imam Suyanto, M.Si., Dr.rer.nat. Ade Anggraini,S.Si, MT.
Language	Indonesian
Relation to curiculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 3 - General Skills. Able to communicate the results of problem studies and physical behavior both in writing and verbally, as well as being able to lead and collaborate at various levels of roles in a team.
Course cutcomes (CO)	 CO 1 : Students can explain the position of the earth in the context of the universe to th internal structure of the earth and the contribution of geophysics in understanding the position and structure CO 2 : Students can explain the role of geophysics in natural resource exploration

Media employed	
Reading list	 Main References : 1. Field Geophysics, Malcolm 2012 2. Fundamentals of Geophysics, Author: William Lowrie; Andreas Fichtner, Cambridge University Press, 3rd edition, 2020.
Content	 Geophysical science and its role in general Earth and Solar System. The shape, size, and composition of the Earth. Earth's revolution and rotation. Parts of the Earth: exosphere, atmosphere, hydrosphere, lithosphere, upper mantle or asthenosphere, lower matle, outer core, and inner core. Erath's Gravitational Field: pendulum and gravitymeter, geoid, isostasy and tides. Seismoloy: Seismographs and seismometers, the mechanism of earthquake occurrence (focal mechanism) and its propagation, the internal structure of the Earth, micro-earthquakes, tsunamis. Geomagnetism and rock magneticsm: compass and magnetometer, main and external fields, daily variations and westward drift, rock magnetization, Paleomagnetism, and ocean floor spreading. Georadioactivity: absolute dating (absolute dating), the age of the Earth. Earth's internal heat: temperature, temperature gradient and surface heat flux, variations in temperature with depth

Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor : Affective :
-------------------	---

39. MFF 2061 - Metrology and Calibration of Physics

Module Name	Metrology and Calibration of Physics
Code	MFF 2061
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Prof. Dr. Eng. Kuwat Triyana, M.Si.
Lecturer	Prof. Dr. Eng. Kuwat Triyana, M.Si.
Language	Indonesian
Relation to curiculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 3 x 50 = 150 minutes per week. Exercises and Assignments : 3 x 60 = 180 minutes per week. Private Learning : 3 x 60 = 180 minutes per week.
Credits points	3 SKS ~ 4.8 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Measurement Technique in Physics (MFF 1061)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course cutcomes (CO)	 CO 1 : Know and understand quality infrastructure, national standard systems, and international standard systems CO 2 : Knowledge of metrology and metrology organization, units and traceability, scientific and industrial metrology, and nanometrology. CO 3 : Know and understand measurement uncertainty and basic principles of calibration

Media employed	 CO 4 : Know and understand about calibration of dimensional measuring instruments, calibration of temperature measuring instruments, calibration of time measuring instruments, and calibration of analytical instruments Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References : 1. Anonim, 2010, Evaluation of measurement data: Guide to the expression of uncertainty in measurement, BPIM 2. Drijarkara, A.P. dan Zaid, G. 2005, Metrologi: Sebuah Pengantar, Puslit KIM-LIPI 3. Hebra, A.J., 2010, The Physics of Metrology, Springer-Verlag, Morlenbach, Germany 4. Janne Kivilaakso, J., Pitkäkoski, A., Valli, J., Johnson, M., Inamoto, N., Aukia, A., dan Saito, M., 2006, Calibration Book, Vaisala Oyj, Helsinki Finland 5. Leach, R.K., 2010, Fundamental Principles of Engineering Nanometrology, Elsevier Inc., Burlington
Content	 Quality infrastructure National Standard System International standard system Metrology and metrology organization Metrological units and traceability Scientific and industrial metrology Nano-Metrology Measurement Uncertainty Basic principles of calibration Mass measuring instrument calibration Dimension measuring instrument calibration temperature measuring instrument calibration time gauge calibration Calibration of analytical instruments
Examination forms	Cognitive : Midterm Exam, Final Exam, Quiz, Assignments Psychomotor : Affective :

40. MFF 2071 - Instrumentation System

Module Name	Instrumentation System
Code	MFF 2071
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Prof. Dr. Eng. Kuwat Triyana, M.Si.
Lecturer	Prof. Dr. Eng. Kuwat Triyana, M.Si., Prof. Dr. Harsojo, SU., M.Sc.
Language	Indonesian
Relation to curiculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Electronics (MFF 1850)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course cutcomes (CO)	 CO 1 : Knowing and understanding instrumentation systems, types of measuring instruments, and statistical and dynamic characteristics of measuring instruments CO 2 : Know and understand errors during measurements, how to calibrate and measure quality assurance, and first and second-order instruments.

Media employed	 CO 3 : Know and understand noise measurement and noise reduction methods CO 4 : Know and understand signal processing, variable conversion elements CO 5 : Know and understand non-destructive testing Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References : 1. Alan S. Morris, 2001, Measurement and Instrumentation Principles, Butterworth-Heinemann, Oxford 2. Hebra, A.J., 2010, The Physics of Metrology, Springer-Verlag, Morlenbach, Germany.
Content	 Introduction to instrumentation systems Types of measuring instruments Statistical characteristics of measuring instruments Dynamic characteristics of measuring instruments Error during measurement Calibration and measurement quality assurance Measuring instruments of order one and two First and second-order measuring instruments Noise Measurement Noise Reduction Method Signal processing Variable Conversion Element Introduction to non-destructive testing
Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor : Affective : Attendance

41 . MFF 2853 - Sensor System

Module Name	Sensor System
Code	MFF 2853
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Prof. Dr. Eng. Kuwat Triyana, M.Si
Lecturer	Prof. Dr. Eng. Kuwat Triyana, M.Si., Dr.Eng. Edi Suharyadi, S.Si., M.Eng.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Electronics (MFF 1850)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Knowing and Understanding the Basics of Sensors and their applications CO 2 : Know and understand sensor systems and signal conditioning CO 3 : Know and understand the types of sensors
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google

152 | Module Handbook - Bachelor of Physics

	Classroom)
Reading list	Main References : 1. Alan S. Morris, 2001, Measurement and Instrumentation Principles, Butterworth-Heinemann, Oxford 2. Hebra, A.J., 2010, The Physics of Metrology, Springer-Verlag, Morlenbach, Germany 3. Wilson, J.S., 2005, Sensor Technology Handbok, Elsevier Inc., Burlington, USA.
Content	 Sensor basics and their application Sensor System Signal Conditioning Acceleration and Vibration Sensor Chemical sensors and biosensors Inductive and capacitive-based displacement sensors Electromagnetism Sensor Flow and level sensor Force and weight sensors Temperature and humidity sensors Optical sensor Position sensor Pressure sensor Strain sensor
Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor : Affective :

42. MFF 2873 - Image of Physics

Module Name	Image of Physics
Code	MFF 2873
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Drs. Gede Bayu Suparta, M.S., Ph.D.
Lecturer	Drs. Gede Bayu Suparta, M.S., Ph.D.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Knowing and Understanding the basic concepts of Image Physics CO 2 : Knowing and understanding Instruments in Image physics CO 3 : Know and understand imaging methods CO 4 : Know and understand the Application of Image Physics in the industry

Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	 Main References : 1. Allison, W., 2006, Fundamental Physics for Probe and Imaging, Oxford University Press, New York. 2. National Academic of Science, 1996, Mathematics and Physics of Emerging Biomedical Imaging, National Academic Press, Washington, Ch. 7-14. Additional References : 1. Relevant scientific journals and patents
Content	 Basic Concept: Digital image Digital image acquisition system digital image formats digital image quality Digital image processing Instruments: Digital photography, digital microscope, Thermal camera, Inspection Camera Imaging methods: photo images, panoramic images, video image, time-lapsed image (cinema), incognito image, 3D image Industrial Application: Visual inspection, surveillance, biometrics iridology, palmistry borescope, ultrasound.
Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor : Affective :

43. MFF 2953 - Celestial Mechanics

Module Name	Celestial Mechanics
Code	MFF 2953
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Eng. Rinto Anugraha NQZ, S.Si., M.Si
Lecturer	Dr. Eng. Rinto Anugraha NQZ, S.Si., M.Si
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Mechanics I (MFF 1401)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Knowing and Understanding Plane and Spherical Trigonometry CO 2 : Know and understand the Coordinates of the Earth and Heavenly Bodies CO 3 : Know and understand Julian Day and the Calendar System CO 4 : Know and understand two and three object problems

	CO 5 : Knowing and understanding the motion of the sun, planets, and moon, phases of the moon, solar and lunar eclipses.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References : 1. Jean Meeus, 1991, Astronomical Algorithm, Willmann-Bell, Virginia, USA. 2. Y. Ryabov, 2006, An Elementary Survey of Celestial Mechanics, Dover Publication, USA.
Content	 Plane and Spherical Trigonometry Coordinates of Earth and Celestial Bodies Julian Day Calendar System Problems two and three things The motion of the Sun, Planets, and Moon Moon phases Solar and Moon Eclipse
Examination forms	Cognitive : Midterm Exam, Final Exam, Quiz, Assignments Psychomotor : Affective :

44. MFF 2029 - Mathematics Theoretical of Physics I

Module Name	Mathematics Theoretical of Physics I
Code	MFF 2029
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Dr.rer.nat. Muhammad Farchani Rosyid, M.Si.
Lecturer	Dr.rer.nat. Muhammad Farchani Rosyid, M.Si.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 3 - General Skills. Able to communicate the results of problem studies and physical behavior both in writing and verbally, as well as being able to lead and collaborate at various levels of roles in a team. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	CO 1 : Mastering and applying the concepts and properties of semigroups, groups, subgroups, homomorphisms, kernels, co-sets, factor groups, direct products, group actions, types of action, orbits, and

	 rigid points. CO 2 : Mastering and applying the concepts and properties of arenas, sub-fields, fields, vector spaces, vector subspaces, freedom, linear coherence, bases, CO 3 : Mastering the concepts and properties of linear mapping, isomorphism, matrix representation for vector spaces and linear mapping, systems of linear equations, and self-value equations. CO 4 : Mastering and applying the concepts and properties of metric spaces, open and closed spheres, metric topology, long spaces, scalar product spaces, Hilbert spaces, orthogonality, Gramm-Schmidt orthonormalization, Pythagorean theorem, Schwartz inequality, orthonormal basis, Fourier series CO 5 : Mastering and applying the concepts and properties of operators in Hilbert spaces, companion operators, self-accompanied operators, isometric mapping, and self-assessment problems for operators in Hilbert spaces.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References : 1. Erwin Kreyszig, 1989, Introductory to Functional Analysis wit Applications, John Wiley & Sons., Inc. 2. M. F. Rosyid, 2015, Aljabar Abstrak dalam Fisika, Gama Press.
Content	 Concepts and properties of semigroups, groups, subgroups, examples Concepts and properties of group homomorphisms, kernels, co-sets, factor groups, direct products, examples Concept and properties of group action, types of action, orbits, rigid points, examples The concept and properties of the arena, sub- rink, field, and examples Concepts and properties of vector spaces, vector subspaces, linear independence, dependence, bases, examples Concept and properties of linear mapping, isomorphism, matrix representation for vector spaces and linear mapping, examples Systems of linear equations, self-valued

	equations, examples
	8. Concepts and properties of metric spaces, open
	and closed spheres, examples
	9. Topological concepts and properties of metrics,
	long spaces, examples
	10. The concept and properties of scalar product
	spaces, Hilbert spaces, orthogonality, Gramm-
	Schmidt orthonormalization, examples
	11. Pythagorean theorem, Schwartz inequalities,
	orthonormal basis, Fourier series, examples
	12. Concepts and properties of operators in Hilbert
	space, co-operators, self-accompanied
	operators, examples
	13. Concept and properties of isometric mapping, the
	self-value problem for operators in Hilbert
	spaces, examples
	Cognitive : Midterm Exam. Final Exam. Quiz.
Examination forms	Assignments
	Psychomotor :
	Affective :

45. MFF 3053 - Physics of Complex and Nonlinear Systems

Module Name	Physics of Complex and Nonlinear Systems
Code	MFF 3053
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Eng. Rinto Anugraha NQZ, S.Si., M.Si.
Lecturer	Dr. Eng. Rinto Anugraha NQZ, S.Si., M.Si., Dr.Eng. Fahrudin Nugroho, S.Si., M.Si.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Numerical Method (MFF 1024), Atomic and Molecular Physics (MFF 2310)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Provide examples of systems that can demonstrate complex phenomena CO 2 : Explain the physical mechanism of the occurrence of complex phenomena in several systems. Included in this is how to direct by setting a specific physical parameter so that the system goes to a complex state

Media employed	 CO 3 : Explain what is meant by turbulence and chaos with a physical definition. CO 4 : Conduct qualitative and quantitative analysis of the dynamics of a system (time evolution). With this analysis, students can distinguish whether a dynamic is categorized as a chaotic dynamic or not. Furthermore, students can determine how high the level of nonlinearity is. Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	 Main References : 1. Mori, H., Kuramoto, Y., 1998, Dissipative Structure and chaos, Springer, Berlin. 2. Zwanzig, R, 2001, Nonequilibrium statistical mechanics, Oxford Univ Press, UK. Additional References : 1.
Content	 Explanation and agreement of lectures, Brief review of the primary keys in linear systems Rayleigh-Bernard Convection Electrohydrodynamic System: Nematic liquid crystal Turbulence Review of Phase Spaces and Paths in phase space; Definition of Chaos Attractors and Strange attractors Logistics Map Random dynamics (data plotting) Leap Unov Exponent and Spectral Analysis Gizburg Landau equation type: Korteweg- DeVries Gizburg-Landau equation type: Nikolaevskiy Ginzburg-Landau equation type: Nikolaevskiy damped and Linear stability analysis

Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor : Affective :
-------------------	---

46. MFF 3291 - Nuclear and Particle Detection Method

Module Name	Nuclear and Particle Detection Method
Code	MFF 3291
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Prof. Dr. Agung Bambang Setio Utomo, S.U.
Lecturer	Prof. Dr. Agung Bambang Setio Utomo, S.U.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
prerequisites for joining the module	Atomic and Molecular Detection Method (MFF 2322)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Understand the mechanism of nuclear radiation interaction with matter (especially detectors) so that students can use nuclear detection equipment, electronic auxiliary equipment, and their use CO 2 : Having an adequate understanding of the manufacture and design of nuclear radiation detection systems for applications and analysis involving nuclear radiation

Media employed	 CO 3 : Increase cooperation in groups and the ability to convey ideas or thoughts, as well as improve the ability to think logically and creatively, which will indirectly foster leadership through group work. CO 4 : Have skills in obtaining lecture materials both from materials provided by lecturers and other materials by searching through books and the internet Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References : 1. Tsoulfanidis N, 1983, Measurement and detection of radiation, Mc Graw Hill
Content	 Introduction: Lecture game rules, assessment rules, Material (Syllabus) Fundamentals of radiation-matter interactions in general Mechanism of a reaction in gas cylinder detectors, scintillators, semiconductors, and high- energy radiation detection Mechanisms and functions of nuclear electronic auxiliary equipment Nuclear detection circuit/system Dosimetry Nuclear Spectroscopy: Gamma, X-ray, NMR. Spectrum analysis. Radiation application nuclear: Activation neutrons.
Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor : Affective :

47. MFF 3423 - Introduction to Laser of Physics

Module Name	Introduction to Laser of Physics
Code	MFF 3423
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Moh. Ali Joko Wasono, M.S.
Lecturer	Dr. Moh. Ali Joko Wasono, M.S., Prof. Dr. Agung Bambang Setio Utomo, S.U.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Electromagnetics I (MFF 2415), Quantum Physics I (MFF 2034), Atomic and Molecular Physics (MFF 2310)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Understand the mechanism of electron interaction in atoms so that students can use lasers, electronic assistive devices, and their uses. CO 2 : Have an adequate understanding of the use of lasers for applications and analysis involving laser light radiation. CO 3 : Increase cooperation in groups and the ability to

Media employed	 convey ideas or thoughts, as well as improve the ability to think logically and creatively, which will indirectly foster leadership through group work. CO 4 : Have skills in obtaining lecture materials from lectures provided by lecturers and other materials by searching through library books and the internet. Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References : 1. Svelto O, 1989, Principles of Lasers, Plenum Press. 2. Milonni PW dan Eberly H, 1991, Lasers, John Wiley. 3
Content	 Introduction: Lecture game rules, assessment rules, Material (Syllabus) Light quantization Properties of gas atoms The interaction of electromagnetic radiation with matter Atomic transition processes: absorption, spontaneous emission, and forced emission of radiation Laser working principle Optical pumping mechanism as a condition for the welding process Optical resonator mechanism and function Types, properties, and characteristics of lasers and laser beams made from active gases, solids, liquids, and semiconductors Laser app
Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor : Affective :

48. MFF 3701 - Medical of Physics

Module Name	Medical of Physics
Code	MFF 3701
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Bambang Murdaka Eka Jati, MS.
Lecturer	Dr. Bambang Murdaka Eka Jati, MS.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	General Physics I (MFF 1011), General Physics II (MFF 1012)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	CO 1 : Understand the form of applying Basic Physics I to problems related to human health and medical devices CO 2 : Understand the form of applying Basic Physics II to problems related to human health and medical devices
weala employed	Omine (LCD, PPI Side, Whiteboard, Laptop) and

168 | Module Handbook - Bachelor of Physics

	Online (Zoom Meeting, Google Meet, Google
	Classicolii)
	Main References :
	(Makanika, Colombang Kalar), adisi 1, UCM Pross
	(Mekallika, Gelollibally Kalol), euisi-1, OGM Fless,
	1 Uyyakalla 2. Jati BME 2022: Dongontar Eisika Kadaktaran
	2. Jali, Divic, 2022. Feriyarilar Fisika Redukterari Listrik Magnit Ontika Padiasi Nuklir dan Taknologi
	(LISUIR, Magnit, Optika, Radiasi Nukili, dari Teknologi Modis), odisi-2, LIGM Pross, Voquakarta
	3 Maghool M 2018: An Introduction to Medical
	Physics Springer 1st edition Birmingham
	4 Gabriel J.F. 1996: Fisika Kedokteran edisi-7
Reading list	Penerbit Buku Kedokteran EGC, Dennasar
	Additional References :
	1. Fosbinder, R.A. & Kelsev, C.A., 2002; Essentials of
	Radiologic Science, 1st edition. Mc Graw Hill, Medical
	Publishing Edition. New York
	2. Cember, H. & Johnson, T.E., 2009: Introduction to
	Health Physics, 4th edition, Graw Hill, Medical
	Publishing Edition, New York
	3. Hendee, W.R. & Ritenour, E.R., 2002: Medical
	Imaging Physics, 4th edition, Wiley Liss Inc.
	1. Metrology in Medical Physics
	2. biomechanics
	3. Biofluids
	4. Vibration and Resonance
	5. Sound and sense of hearing
	6. Ultrasound in medicine
	7 Heat and Sense of Taste
Content	8 Bioelectric
	10 Electromagnetic wave
	11. Disoption and the Carpo of Sight
	12. Atoms and Nuclear Radiation
	13. X-rays and Tomography
	14. MRI
Examination forms	Cognitive : Midterm Exam, Final Exam, Quiz,
	Assignments
	Psychomotor : Project Results
	Affective : Attendance

49. MFF 3843 - Microwave

Module Name	Microwave
Code	MFF 3843
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the	
module	Dr. Militayana, S.Si., M.Si.
Lecturer	Dr. Mitrayana, S.Si., M.Si.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120
Workload	 minutes per week. 3. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Electromagnetics I (MFF 2415), Mathematical Physics III (MFF 2024)I
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Students can explain microwave propagation in various waveguide models. CO 2 : Students can understand the working principles of control components and microwave generator sources. CO 3 : Students can explain the application of microwaves in ESR, Radar, Communication Systems, and Tomographic Thermoacoustic Systems.

Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	 Main References : 1. Allan W. Scott, 1993, Understanding Microwaves, John Wiley & Sons. 2. Mike Golio, 2008, RF and Microwave Applications and Systems. 3. Mitrayana, 2016, Gelombang Mikro Teori dan Aplikasi, Gadjah Mada Press.
Content	 Introduction: Lecture Contract, Survey of Microwave (GM) equipment and systems, the relationship of gm WITH OTHER ELECTRONIC EQUIPMENT, gm SYSTEM, gm spectrum, why GM equipment is needed, the basic design of GM system GM transmission forms, signal control components, semiconductor amplifiers and insulators, GM tubes, GM weak sound receivers, GM antennas Microwave Field Wave Guide Insertion Loss, Gain, and Return Loss Adjustment to the Smith Chart Microwave Signal Control Components Microwave Signal Control Components Microwave Application 1: Electron Spin Resonance Microwave App 3: Communication with Microwaves Microwave Application 4: Thermoacoustic Tomography (TAT)
Examination forms	Cognitive : Midterm Exam, Final Exam, Group Assignments Psychomotor : Affective :

50. MFF 3871 - Tomography of Physics

Module Name	Tomography of Physics
Code	MFF 3871
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Drs. Gede Bayu Suparta, M.S., Ph.D.
Lecturer	Drs. Gede Bayu Suparta, M.S., Ph.D.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Knowing and Understanding the History of CT, application trends, and R&D trends CO 2 : Know and understand the basic theory of Hough, Radon, Fourier, Matrix, and Matrix equations and iteration transformations CO 3 : Knowledge and understanding of the CT system CO 4 : Knowing and understanding the Sampling Process

	CO 5 Know and understand reconstruction methods
	CO 6 : Know and understand CT Software
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References : 1. Buzug, T.M., 2008. Computed Tomography: From Photon Statistics to Modern Cone-Beam CT, SpringerVerlag Berlin Heidelberg. 2. Kak, A.C. and M. Slaney, 1988, Principles of Computed Tomography Imaging, IEEE Press, Piscataway, NJ.
Content	 Introduction: CT history, application trends, R&D trends Basic Theory of Hough Transformation, Radon Transformation, Fourier transform, Matrix transform, Matrix Equation and Iteration. CT System: Design, Components CT system: set-up, working principle CT system: Parameters Sampling Process: data acquisition, interpolation, Process Sampling: pre-processing data Reconstruction Method: interpolation process, , reverse project process, and image display process CT software: sampling, CT software: image processing CT software: image analysis.
Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor : Affective :

51. MFF 3891 - Environmental of Physics

Module Name	Environmental of Physics
Code	MFF 3891
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Drs. Sunarta, MS.
Lecturer	Drs. Sunarta, MS., Drs. Wagini, MSc.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Knowing and understanding the history of life on Earth, the thermodynamic state of the Earth, changes in environmental conditions, as well as humans and their activities CO 2 : Know and understand environmental problems; take the role of protecting and managing the environment from a physical and analytical approach. CO 3 : Get to know the sources and characteristics of

Media employed	 environmental pollution in general. CO 4 : Recognize the types of pollution in the soil and water environment caused by heavy metals CO 5 : Analyze physically, especially the type of pollution from liquid waste and industrial waste CO 6 : Identify, analyze and conclude ways of handling pollution in the field. Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google
Reading list	Classroom) Main References : 1. Smith C., 2011, Environmental Physics; 2. Monteith J., 2007, Principles of Environmental Physics, Univ. of Nottingham 3. Wagini, 2009, Fisika Lingkungan, Jurusan Fisika FMIPA UGM
Content	 The history of life on earth, a thermodynamic review of the state of the earth, changes in environmental conditions, the environment (natural resources, living natural resources, and environmental conditions), humans and their activities Environmental problems, the role of science (physics) as a contribution to maintaining and managing the environment Sources and nature of environmental pollution Environmental Radiation Pollution of soil and water Metal type pollutant Handling and treatment of liquid waste Identification of the home industry Field survey
Examination forms	Cognitive : Midterm Exam, Final Exam, Quiz, Assignments Psychomotor : Project Results Affective :

52. MFF 4033 - Quantum Mechanics

Module Name	Quantum Mechanics
Code	MFF 4033
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Dr.rer.nat. Muhammad Farchani Rosyid, M.Si.
Lecturer	Dr.rer.nat. Muhammad Farchani Rosyid, M.Si.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Quantum Physics I (MFF 2034)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Understand the general description of mechanics: state space, Observables, expected values, standard deviations, dynamics CO 2 : Mastering and applying the concept of Hilbert space as a physical space: complex vector space, scalar product, norm, orthogonality and orthonormality, orthonormal basis and Fourier series, completeness of scalar product space.
	 CO 3 : Mastering and applying the concepts of linear operators in Hilbert space: adjoint operators, self-adjoint operators, unitary operators, exponential operators, self-value equations, degeneration, self-adjoint and self-adjoint operators, and unitary operators. CO 4 : Mastering and applying the postulations of quantum mechanics: quantum state space, quantum observables, quantum probability, expected value and standard deviation, Heisenberg uncertainty, and quantum dynamics. CO 5 : Mastering and applying quantum dynamics: time shift operators, and state vectors. CO 6 : Master and apply position representation and momentum representation: external basis, position basis, and momentum basis, Fourier transform, position operator and momentum basis. CO 7 : Mastering and applying Schroedinger Drawing and Heisenberg Drawing.
----------------	--
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References : 1. Cohen-Tannoudji, C. dkk., 2003, Quantum Mechanics, John Wiley 2. Bowman, G. E., 2008, Essential Quantum Mechanics, Oxford University Press, Oxford.

	1.	1. Overview of mechanics in general: state
		space, Observables, expected values, standard
		deviations, dynamics. 2. Examples
	2.	Hilbert space as a state space: a complex vector
		space,
	3.	Scalar product, norm, orthogonality and
		orthonormality, orthonormal basis and Fourier
		series, and space completeness have a scalar product.
	4.	Mastering and applying the concept of linear
		operators in Hilbert space: adjoint operators, self-
		adjoint operators, unitary operators, exponential
	_	operators,
	5.	sell-assessment, degeneracy, sell-assessment,
	6	Postulations of quantum mechanics: quantum
	0.	state space, quantum observables, quantum
Content		probability, expected value, and standard
		deviation,
	7.	Heisenberg uncertainty, quantum dynamics.
		Examples
	8.	Quantum dynamics: time shift operators,
		derivation of the Schroedinger equation for time
	•	shift operators and state vectors,
	9. 10	Quantum dynamics examples
	10.	external basis position and momentum basis
		Fourier transform position operator and
		momentum operator in position and momentum
		basis, Schroedinger equation in position and
		momentum basis
	11.	Examples of Position Representative and
		Momentum Representative
	12.	Mastering and applying Schroedinger Drawing
		and Heisenberg Drawing. Examples.
	Cogn	<i>itive</i> : Midterm Exam, Final Exam, Quiz,
Examination forms	Assignments	
		tive :

53. MFF 4611 - Liquid Crystal of Physics and Polymers

Module Name	Liquid Crystal of Physics and Polymers		
Code	MFF 4611		
Semester(s) in which the module is taught	ODD semester		
Module designation	Undergraduate stage		
Person responsible for the module	Prof. Yusril Yusuf, S.Si., M.Si., M.Eng., D.Eng., Ph.D.		
Lecturer	Prof. Yusril Yusuf, S.Si., M.Si., M.Eng., D.Eng., Ph.D.		
Language	Indonesian		
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics		
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods		
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week. 		
Credits points	2 SKS ~ 3.2 ECTS		
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course		
Required and recommended prerequisites for joining the module	None		
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems. 		
Course outcomes (CO)	 CO 1 : Knowing and Understanding Liquid Crystal CO 2 : Know and understand the optical properties of Liquid Crystals CO 3 : Know and understand the effects of electricity on liquid crystals and Freedericksz. transitions CO 4 : Know and understand Polymer Physics CO 5 : Know and understand the properties of polymer molecules 		

	CO 6 · Knowing and understanding Polymer Liquid
	Crystals
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References : 1. Deng-Ke Yang and Shin-Tson Wu, Fundamental of Liquid Crystal Devices, John Wiley & Sons Ltd., 2006. 2. Masao Doi, Introduction to Polymer Physics, Oxford Science Publication, Oxford University Press, 2001
Content	 Introduction to Liquid Crystal Liquid Crystal Physics (Orientational order, elastic properties of liquid crystals, response of liquid crystals to electric and magnetic fields) Optical properties of liquid crystals Electrical Effects on the liquid crystal Frederick. Transition Introduction to Polymer physics The properties of polymer molecules (ideal chains, distribution of segments in polymer chains, and non-ideal chains) Polymer Liquid Crystal
Examination forms	Cognitive : Midterm Exam, Final Exam, Quiz, Assignments Psychomotor : Affective :

54. MFF 4893 - Introduction to Econophysics

Module Name	Introduction to Econophysics		
Code	MFF 4893		
Semester(s) in which the module is taught	ODD semester		
Module designation	Undergraduate stage		
Person responsible for the module	Dr. Dwi Satya Palupi		
Lecturer	Dr. Dwi Satya Palupi		
Language	Indonesian		
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics		
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods		
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week. 		
Credits points	2 SKS ~ 3.2 ECTS		
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course		
Required and recommended prerequisites for joining the module	None		
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems. 		
Course outcomes (CO)	 CO 1 : Able to explain the scope of the field of econophysics, mention the basic similarities and differences between physics and economics CO 2 : Able to explain complex systems in physics and economics, mention analogies between physics and economics CO 3 : Able to explain several applications of thermodynamics in economics, analyze wealth 		

	all a fully of the second second line (all sections and the second second second second second second second se		
	distribution, money distribution, and income distribu		
	using statistical physics concepts		
	CO 4 : Able to formulate market price dynamics by		
	applying the concepts of classical mechanics and		
	quantum mechanics		
	CO 5 : Able to analyze the state of a financial market		
	using stochastic processes statistical physics		
	concepts and quantum mechanics concepts		
	Offline (ICD PPT Slide Whiteboard Lanton) and		
Madia amployed	Online (Zoom Moeting Google Meet Google		
Media employed	Classroom		
	Main Deferences :		
	Main References :		
	1. Montegna, RN dan Stanley, E.H., 2000, An		
	Introduction to Econophysics, Correlations and		
	Complexity in Finance, Cambridge University Press,		
	Cambridge, UK ISBN 0 521 62008 2.		
	2. Michael Schulz, 2003, Statistical Physics and		
	Economic, concepts, tools, and Application, Spinger		
Deeding list	Verlag New York.		
Reading list	Additional References :		
	1. Rickles.Dean. 2007. Econophysics for		
	philosophers. Studies in History and Philosopy of		
	Modern Physics 948-947 doi:		
	10 1016/ishosh 2007 01 0003		
	10.1010/JShpsb.2007.01.0005.,		
	2 Dragulascu A dan Vakovanka VM 2000 Statistical		
	Z. Diaguiescu, A dali Takoveliko, Vivi., 2000, Sialisiidai Maabania of manay, Eur Dhya, J. P. 17, 722, 720		
	1 1 Evaluation of the DDKDS 2 Second of the		
	1. 1. Explanation of the RPRPS, 2. Scope of the		
	field of econophysics: branches of physics and		
	the similarities of physics with economics related		
	to objects, methods, amount of data,		
	applications. PACS, the definition of		
	econophysics, differences and		
	 Economics is a complex system of many objects 		
	and interactions microeconomics and		
	macrossonomics in methomatical equations		
Content	3. Analogies in the fields of physics and economics:		
Content	system analogies, data patterns, quantities		
	Applied thermodynamics in economics: applied		
	equations of state for ideal gases and quantities		
	that express the state of the system applied		
	that express the state of the system, applied		
	statistical physics to obtain distributions of		
	wealth, money, income		
	5. The dynamics of commodity prices in the market:		
	describing price dynamics with classical		
	mechanics and prices with quantum mechanics		
	mechanics and prices with quantum mechanics.		
	6. Financial markets: definition of financial markets,		

	 stock price movements, options, and currency exchange rates, 7. Stochastic processes applied statistical physics in financial markets: entropy, stock, and option price movements, 8. application of quantum mechanics in financial markets: stock and option price movements, probability analogy and operator analogy, calculation methods, the Schrodinger equation, and the Black-School model of trajectory.
Examination forms	Cognitive : Midterm Exam, Final Exam, Quiz, Assignments Psychomotor : Presentation, Project Results Affective :

55. MFF 4043 - Introduction to Astrophysics and Cosmology

Module Name	Introduction to Astrophysics and Cosmology
Code	MFF 4043
Semester(s) in which the module is taught	ODD semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Eng. Rinto Anugraha NQZ, S.Si., M.Si.
Lecturer	Dr. Eng. Rinto Anugraha NQZ, S.Si., M.Si., Romy Hanang Setya Budhi, S.Si., M,Sc., Ph.D.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 3 x 50 = 150 minutes per week. Exercises and Assignments : 3 x 60 = 180 minutes per week. Private Learning : 3 x 60 = 180 minutes per week.
Credits points	3 SKS ~ 4.8 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Nuclear and Particle Physics I (MFF 2205)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 4 - Special Skills. Able to design and carry out experiments/theoretical reviews, able to identify a physical problem based on the results of observations and experiments, and able to operate related technologies. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	CO 1 : Knowing and Understanding Stellar Astrophysics

	CO 2 : Knowing and understanding the Galaxy
	CO 3 : Knowing and understanding Cosmology
	Offline (LCD, PPT Slide, Whiteboard, Laptop) and
Media employed	Online (Zoom Meeting, Google Meet, Google
Reading list	 Main References : 1. Arnab Rai Choudhuri, Astrophysics for Physicists, 2010, Cambridge University Press 2. Francis Leblanc, An Introduction to Stellar Astrophysics, 2010, John Wiley and Sons, Ltd 3. David Lyth, Cosmology For Physicists, 2017, Taylor & Francis Group, LLC 4. Ryden, B. Introduction of Cosmology, 2016, Department of Astronomy, The Ohio State University 5. Raine, D.J & Thomas, E.G, An Introduction To The Science Of Cosmology, 2001, IOP Publishing. 6. M. Kachelrieß, A Concise Introduction to Astrophysics, 2011, Institutt for fysikk NTNU, Trondheim Norway.
Content	 Stellar Astrophysics: Continuous radiation from the stars (star brightness, star color, black body radiation, stellar distance, luminosity, and absolute magnitude) Stellar Astrophysics: b. Line spectrum and its formation (Bohr-Summerfield atomic model, line spectrum formation, Hertzsprung-Russel diagram), Telescopes and other detectors (optical telescopes, other wavelength regions, neutrinos, and gravitational waves Stellar Astrophysics: d. Binary stars and star parameters (Kepler's Laws, mass-luminosity relation, star radius) Stellar Astrophysics: e. Star atmosphere and radiation transport, main sequence stars and stellar structure (stellar structure equations, Eddington luminosity and convective instability, Eddington standard model, stellar stability, stellar variables). Stellar Astrophysics: Nuclear Processes in stars (Sources of energy in stars, fundamental interactions, thermonuclear reactions, significant nuclear combustion reactions, solar neutrinos) Stellar Astrophysics: Endpoints of stellar

		Fermi gas pressure, Chandrasekar white dwarfs and limits, supernovae, pulsars, and Neutron
	7.	stars) Stellar Astrophysics: Black Holes (Schwarzschild metric, gravitational radiation from pulsars,
		thermodynamics, and evaporation of Black Holes).
	8.	Galaxies: Star formation and interstellar medium (interstellar dust, interstellar gas, star formation)
	9.	Galaxies: Star clusters (evolved globular clusters, virial masses, Hetzsprung-Russel masses in clusters)
	10.	. Galaxy: Galaxy (Milky Way, regular and active galaxies, non-thermal radiation)
	11.	Cosmology: a. An introduction to the universe on a large scale (problems on the static Newtonian universe, cosmological principles, expansion of the universe and Hubble's laws).
	12.	Cosmology: b. Cosmological model (Friedmann's equations, scale dependencies on various forms of energy, cosmological model with one energy component, ACDM model)
	13	Cosmology: c. Young universe (thermal history of the universe, Big Bang Nucleosynthesis, structure formation, CMB, inflation)
Examination forms	Cogr Assig Psyc Affec	nitive : Midterm Exam, Final Exam, Quiz, Inments homotor : Int ive :

56. - Internship

Module Name	Internship	
Code	MFF 4891	
Semester(s) in which the module is taught	EVEN semester	
Module designation	Undergraduate stage	
Person responsible for the module	Dr.Eng. Ahmad Kusumaatmaja, S.Si., M.Sc.	
Lecturer	Dr.Eng. Ahmad Kusumaatmaja, S.Si., M.Sc.	
Language	Indonesian	
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics	
Teaching methods		
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week. 	
Credits points	2 SKS ~ 3.2 ECTS	
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course	
Required and recommended prerequisites for joining the module	None	
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretic concepts and principles of classical and model physics and able to apply basic concepts of physic and related mathematical methods in finding solution to physical problems. PLO 4 - Special Skills. Able to design and carry of experiments/theoretical reviews, able to identify physical problem based on the results of observation and experiments, and able to operate relate technologies. PLO 5 - Long Life Learning. Able to analyze variou alternative solutions to physical problems and concluct them for appropriate decision-making, both in familia and new problems. 	
Course outcomes (CO)	CO 1 : CO 2 : CO 3 : CO 4 :	

	CO 5 : CO 6 : CO 7 : CO 8 : CO 9 : CO 10 : CO 11 : CO 12 : CO 13 :
Media employed	
Reading list	Main References : 1. 2. 3. 4. 5. 6. Additional References : 1. 2. 3. 4.
Content	1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
Examination forms	Cognitive : Psychomotor : Affective :

57. MFF 1064 - Graphical Methods in Physics

Module Name	Graphical Methods in Physics
Code	MFF 1064
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Drs. Sunarta, MS.
Lecturer	Drs. Sunarta, MS.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Get an overview of the Analysis model graphically. CO 2 : Making graphs as a basis for analyzing observational data CO 3 : Draw the Analysis chart correctly. CO 4 : Calculate the values of the magnitudes and the

	 values of the uncertainty of the graph quantities. Analyze accurately CO 5 : Analyze data with linear and quadratic graph models CO 6 : Analyze data with exponential graph models, calibrations, and hypotheses CO 7 : Converting non-linear data models to linear analysis CO 8 : Analyzing real data obtained from observations in the lab
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop, unit mikrokontoler) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References : 1. Buku : Modul Kuliah "Metode Analisa Grafik"- Sunarta, 2013 2. Taylor, J. R.1992.An Introduction toError Analysis. University Science Book.California 3. Bevington, P. R.1999.Data Reduction and Error Analysis for the Physical Science. Mc Graw-Hill Book Co 4. Dulfer G, H & Fadeli., 1974. Metode Pengukuran & Analisa Data; FIPA-UGM.
Content	 The importance/benefit of graphs in processing research data Method of Plotting Graph Analysis Calculating the values of graphical quantities (in general) Graph Error Analysis (in general) Linear Graph Analysis Quadratic Graph Analysis Exponential Graph Model Analysis Analysis of the Calibration chart model Analysis of the Hypothesis Graph Model Graph Linear Method Testing Linear data analysis Exponential Analysis data testing Data testing Hypothesis analysis and calibration

Examination forms	Cognitive : Midterm Exam, Final Exam, Quiz, Assignments Psychomotor : Affective :
-------------------	--

58. MFF 1528 - Simulation and Visualization in of Physics

Module Name	Simulation and Visualization in of Physics
Code	MFF 1528
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Eko Sulistya, M.Si.
Lecturer	Dr. Eko Sulistya, M.Si.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 4 - Special Skills. Able to design and carry out experiments/theoretical reviews, able to identify a physical problem based on the results of observations and experiments, and able to operate related technologies. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	CO 1 : Create animation and visualization of 1-dimensional and 2-dimensional object motion to explain the concepts of

	speed, acceleration and distance traveled by objects.
	CO 2 : Simulate the phenomenon of object motion and
	relate it to direct measurements, for example the free fall of
	objects and measure the time it reaches the ground using a
	stopwatch
	CO 3 : Using simulation and visualization methods to solve
	physics problems, and verify the results with the results of
	manual calculations.
	CO 4 : Using software that applies computational methods
	as a basis for calculating physics simulations, which are
	related to the application of physics in various fields of
	people's lives.
	Offline (LCD, PPT Slide, Whiteboard, Laptop, unit
Media employed	mikrokontoler) and Online (Zoom Meeting, Google
	Meet, Google Classroom)
	Main References :
	1. Halliday, D., Resnick, R., & Walker, J. (2018).
	Fundamentals of physics. 11ed. New York: Wiley.
	2. Ziegler, J.F., Biersack, J.P., & Ziegler, M.D., (2008).
	SRIM The Stopping and Range of Ions in Matter.
	Chester, Maryland, U.S.A: SRIM Co.
	3. Ramtal, D. and Dobre, A., (2011), Physics for Flash
	Games, Animation, and Simulations, Apress Berkeley,
	CA
Reading list	4. http://www.srim.org/
	5. https://www.design-simulation.com/ip/
	Additional References :
	1. Briggs, A., (2012), Helio!Python, Manning
	Publication Co., Sheller Island, NY.
	2. Langtangen, H.P.,(2009), A Philler on Scientific
	3 Shaw 7 A (2011) Learn Puthon The Hard Way
	http://learnpythonthehardway.org/
	4 Sulistva F (2011) Pemrograman Python-Analisis
	Data Eksperimen Fisika, Dep. Fisika, FMIPA, UGM
	1. Use Microsoft Excel to create visualizations and
	physics simulations
	2 Calculation of physics formulas with VBA (Visual
	Basic for Application
	2 Cive exemples of eaces of 2 dimensional motion
	3. Give examples of cases of 2-dimensional motion
	with the Excel program.
Content	4. Introducing and using programming languages to
	create physics simulations and visualizations,
	including Adobe Flash, Python, and Pygame.
	5. Create class objects with action scripts to
	visualize with Adobe Flash.
	6. Create motion visualizations with the Interactive
	physics program
	physics program

	 Make an experimental mechanical simulation (2- dimensional motion) by measuring real-time time with a stopwatch.
	 Doing physics problems from textbooks by applying physics visualization.
	 9. Comparing the results of problem-solving between simulations and analytical calculations 10. Simulate the interaction between ions and the medium. 11. Creating a radiotherapy simulation design with the SRIM program.
Examination forms	Cognitive : Midterm Exam, Final Exam, Quiz, Assignments Psychomotor : Project Results Affective : Attendance

59. MFF 2070 - Microcontroller and Interfacing

Module Name	Microcontroller and Interfacing
Code	MFF 2070
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Eko Sulistya, M.Si
Lecturer	Dr. Eko Sulistya, M.Si
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Electronics (MFF 1850)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Create animations and visualizations of the motion of 1-dimensional and 2-dimensional objects to explain the concepts of speed, acceleration, and distance traveled by objects. CO 2 : Simulate the phenomenon of object motion and relate it to direct measurements, such as the free fall motion of objects, and measure the time to the ground using a stopwatch.

	 CO 3 : Use simulation and visualization methods to solve physics problems, verify the physics problems, and verify the results with the results of manual calculations. CO 4 : Use software that applies computational methods as the basis for physics simulation calculations, which are related to the application of physics in various fields of community life.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop, unit mikrokontoler) and Online (Zoom Meeting, Google Meet, Google Classroom, tinkercad, wokwi)
Reading list	Main References : 1. Halliday, D., Resnick, R., & Walker, J. (2018). Fundamentals of physics. 11ed. New York: Wiley. 2. Ziegler, J.F., Biersack, J.P., & Ziegler, M.D., (2008). SRIM The Stopping and Range of Ions in Matter. Chester, Maryland, U.S.A: SRIM Co. 3. Ramtal, D. and Dobre, A., (2011), Physics for Flash Games, Animation, and Simulations, Apress Berkeley, CA 4. http://www.srim.org/ 5. https://www.design-simulation.com/ip
Content	 An introduction to the tinkercad.com site. as a medium and means of design with a microcontroller. Calculation of physics formulas with VBA (Visual Basic for Application). Give examples of cases of 2-dimensional motion with the Excel program. Introducing and using programming languages to create physics simulations and visualizations, including Adobe Flash, Python, and Pygame. Create class objects with action scripts to visualize with Adobe Flash. Make motion visualizations with the Interactive Physics program Make an experimental mechanical simulation (2- dimensional motion) by measuring real-time time with a stopwatch. Do physics problems from textbooks by applying physics visualization

	9. Comparing the results of problem-solving
	between simulations and analytical calculations
	10. Simulate the interaction between ions and the medium.
	11. Create a radiotherapy simulation design with the
	SRIM program.
Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor : Project Results Affective :

60. MFF 2322 - Atomic and Molecular Detection Method

Module Name	Atomic and Molecular Detection Method
Code	MFF 2322
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Prof. Dr. Agung Bambang Setio Utomo, S.U.
Lecturer	Prof. Dr. Agung Bambang Setio Utomo, S.U.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Atomic and Molecular Physics (MFF 2310)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Know and understand the atomic structure and atomic processes CO 2 : Know and understand the various types of optical radiation sources CO 3 : Knowledge and understanding of optical radiation detection CO 4 : Knowledge and understanding of optical and electronic support devices

	 CO 5 : Knowledge and understanding of atomic spectroscopy CO 6 : Know and understand spectrum analysis and its application Offline (LCD, PPT Slide, Whiteboard, Laptop) and
Media employed	Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References : 1. Svanberg, S., 1992. Atomic and Molecular Spec- trocopy, edisi 2, Springer-Verlag, New York. 2. Boyd, R. W., 1983 : Radiometry and the Detection of Optical Radiation, John Wiley & Sons, New York.
Content	 Atomic Spectroscopy Fine and hyperfine structure Atomic emission, line width, and life time Isotropic shift, atomic scattering, absorption, and fluorescence Optical radiation source Optical radiation detection: Electromagnetic radiation and its interaction with matter Radiation, photoconductive and photovoltaic detectors optical and electronic support tools Atomic spectroscopy spectrum analysis and its applications
Examination forms	Cognitive : Midterm Exam, Final Exam, Quiz Psychomotor : Affective :

61. MFF 3002 - Science and Religion

Module Name	Science and Religion
Code	MFF 3002
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Drs. Sunarta, MS.
Lecturer	Drs. Sunarta, MS., Dr. Moh. Ali Joko
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	PLO 1 - Attitude. Have faith and fear of God Almighty, and apply good morals, ethics, initiative, and responsibility in completing their duties.
Course outcomes (CO)	CO 1 : Knowing and Understanding the position and role of Science in Religion and Religion as a source of inspiration for Science.

	CO 2 : Knowing and Understanding the science of Inheritance
	CO 3 : Knowing and understanding the separation between religion and science
	CO 4 : Knowing and understanding the formation of human characters with spiritual-based science Religion Scientific miracles in humans, animals, plants, and the universe.
	CO 5 : Knowing and understanding the concurrency of science with Divine knowledge (Religion) to obtain happiness, salvation, and human glory.
	CO 6 : Knowing and understanding the contribution of science and technology to the solution of human problems, concepts, and recipes for human success and glory
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
	Main References :
	Main References : 1. Teologi Filsafat sains, Purwadi, A., UMM-Press, Malang, 2002.
	 Main References : 1. Teologi Filsafat sains, Purwadi, A., UMM-Press, Malang, 2002. 2. Lima Masalah Terbesar SAINS yang belum terpecahkan, Wiggins, A.W., & Wynn, C. M., PT Intan Sejati, 2004.,
	 Main References : 1. Teologi Filsafat sains, Purwadi, A., UMM-Press, Malang, 2002. 2. Lima Masalah Terbesar SAINS yang belum terpecahkan, Wiggins, A.W., & Wynn, C. M., PT Intan Sejati, 2004., 3. AL-Qur'an Ilmu pengetahuan & Teknologi, Baiquni A., PT Dana Bhakti Prima Jasa, 1994. BO71
Reading list	 Main References : 1. Teologi Filsafat sains, Purwadi, A., UMM-Press, Malang, 2002. 2. Lima Masalah Terbesar SAINS yang belum terpecahkan, Wiggins, A.W., & Wynn, C. M., PT Intan Sejati, 2004., 3. AL-Qur'an Ilmu pengetahuan & Teknologi, Baiquni A., PT Dana Bhakti Prima Jasa, 1994. BO71 4. Sains dalam Alqur'an, mengerti mukjizat ilmiah Firman Allah, Thayyarah N., ZAMAN, 2013.,
Reading list	 Main References : 1. Teologi Filsafat sains, Purwadi, A., UMM-Press, Malang, 2002. 2. Lima Masalah Terbesar SAINS yang belum terpecahkan, Wiggins, A.W., & Wynn, C. M., PT Intan Sejati, 2004., 3. AL-Qur'an Ilmu pengetahuan & Teknologi, Baiquni A., PT Dana Bhakti Prima Jasa, 1994. BO71 4. Sains dalam Alqur'an, mengerti mukjizat ilmiah Firman Allah, Thayyarah N., ZAMAN, 2013., 5. Ayat ayat Kosmos dalam Alqur'an, ElNaggar Z., Shorouk International Bookshop, 2010.,
Reading list	 Main References : 1. Teologi Filsafat sains, Purwadi, A., UMM-Press, Malang, 2002. 2. Lima Masalah Terbesar SAINS yang belum terpecahkan, Wiggins, A.W., & Wynn, C. M., PT Intan Sejati, 2004., 3. AL-Qur'an Ilmu pengetahuan & Teknologi, Baiquni A., PT Dana Bhakti Prima Jasa, 1994. BO71 4. Sains dalam Alqur'an, mengerti mukjizat ilmiah Firman Allah, Thayyarah N., ZAMAN, 2013., 5. Ayat ayat Kosmos dalam Alqur'an, ElNaggar Z., Shorouk International Bookshop, 2010., 6. Ayat ayat Semesta, Purwanto A., Mizan, 2008.,
Reading list	 Main References : 1. Teologi Filsafat sains, Purwadi, A., UMM-Press, Malang, 2002. 2. Lima Masalah Terbesar SAINS yang belum terpecahkan, Wiggins, A.W., & Wynn, C. M., PT Intan Sejati, 2004., 3. AL-Qur'an Ilmu pengetahuan & Teknologi, Baiquni A., PT Dana Bhakti Prima Jasa, 1994. BO71 4. Sains dalam Alqur'an, mengerti mukjizat ilmiah Firman Allah, Thayyarah N., ZAMAN, 2013., 5. Ayat ayat Kosmos dalam Alqur'an, ElNaggar Z., Shorouk International Bookshop, 2010., 6. Ayat ayat Semesta, Purwanto A., Mizan, 2008.,

	2012.
	1. The position and role of science in religion
	2. Inheritance mathematical analysis
	3. Muslim family Property Management
	4. Calculating inheritance with heir chart
	5. The method of dividing the inheritance if the
	number of inheritances is reduced
	6. The method of dividing inheritance when the
	amount of inheritance is excessive
	7. Calculating the wealth of a Muslim family
	8. Misunderstanding, the dichotomy between
Content	RELIGION and science and technology
	9. Efforts to know the pattern of creation of the
	Creator of all things
	10. Human nature wants to be successful, happy,
	and sale forever, and now to get it.
	scientific inspiration
	12 Digital IMTAO-based Saintek
	13 Hijrah movement is the principle of everything to
	progress and develop.
	14.
	Cognitive : Midterm Exam, Final Exam, Quiz,
Examination forms	Assignments
	Psychomotor :
	Affective :

62. MFF 3024 - Capita Selecta Computational Physics

Module Name	Capita Selecta Computational Physics
Code	MFF 3024
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr.Eng. Fahrudin Nugroho, S.Si., M.Si.
Lecturer	Dr.Eng. Fahrudin Nugroho, S.Si., M.Si., Dr. Eko Sulistya, M.Si.
Language	Indonesian
Relation to curiculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Computational Physics (MFF 2027)
Module objectives/intended learning outcomes PLO	PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems.

	alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar
Course cutcomes (CO)	 CO 1 : Know and understand advanced computational methods in solving various current physics problems CO 2 : Applying advanced computational methods in solving various physics problems
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
	Main References :
Reading list	1. Robin H. landau, Manual J. Paez dan Critian C. Bordelanu, 2008, A Survey of Computational Physics, Princeton University Press, New Jersey.
Content	 The basic principles and implementation of high- performance computing with parallel computing strategies or quantum computers Solving N-body system problems with the Monte- Carlo. method Density Functional Method Theory (DFT) Density Matrix Renormalization Group (DMRG) Method The Suzuki-Trotter decomposition method or another approximation method, Simulation of Random Walk and Traveling Salesman Problem Radioactive Decay Simulation Solution of Partial Differential Equations Fast Fourier Transform and Signal Filtering problems
Examination forms	Cognitive : Midterm Exam, Final Exam, Quiz, Assignments Psychomotor : Affective :

63. MFF 3030 - Mathematics Theoretical of Physics II

Module Name	Mathematics Theoretical of Physics II
Code	MFF 3030
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr.rer.nat. Muhammad Farchani Rosyid, M.Si.
Lecturer	Dr.rer.nat. Muhammad Farchani Rosyid, M.Si.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 3 - General Skills. Able to communicate the
	PLO 3 - General Skills. Able to communicate the results of problem studies and physical behavior both in

	writing and verbally, as well as being able to lead and collaborate at various levels of roles in a team.
	PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
	CO 1 : Mastering and applying the concepts and properties of general topology, the concept of open sets and their properties, the concept of closed sets, the natural topology on lines, planes, and real spaces
	CO 2 : Mastering and applying the concepts and properties of interior and closure, density sets, continuous mapping, and homeomorphism
Course outcomes (CO)	CO 3 : Mastering and applying the concepts and properties of maps and atlases, diversity, differentiable mapping, differentiable functions and curves, tangent vectors, tangent spaces, and companion tangents.
	CO 4 : Mastering and applying the concepts and properties of tensor, vector field, tensor field integral curve, and Lie derivative.
	CO 5 : Mastering and applying the concepts and properties of metric tensors and semi-Riemannan diversity, connections, geodesic, covariance derivatives, curvature, and torsion.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
	Main References :
Reading list	1. J M. Lee, 2011, Introcduction to Topological Manifolds, Springer, Berlin.

	1.	Examples are general topological concepts and
		properties, open and closed-set concepts and
		their properties.
	2.	Natural topology on lines, planes, and real
		spaces.
	3.	
	4.	Mastering and applying the concepts and
		properties of interior and closing, density sets,
		continuous mapping, and homeomorphism
	_	examples.
	5. 6	Mastering and applying the concepts and
	б.	properties of mans and atlases, diversity, and
		examples
	7	Mastering and applying differential mapping
		differential functions and curves, tangent vectors,
Content		tangent spaces, companion tangent spaces, and
Content		examples.
	8.	Mastering and applying the concepts and
		properties of tensor, vector field, integral curve,
		Lie derivative, examples.
	9.	Mastering and applying the concepts and
	10	properties of tensor fields, examples.
	10.	
	11.	Examples include mastering and applying the
	12.	concepts and properties of semi-Riemananan
		metric and multiplicity tensors.
	13.	Examples include mastering and applying the
		concepts and properties of the connection,
		geodesic, covariance derivative, curvature, and
		torsion.
	14.	
	Coar	nitive : Midterm Exam, Final Exam, Quiz.
Examination forms	Assig	nments
Ps		homotor :
	Affec	ctive :

64. MFF 3114 - Introduction to Particle of Physics

Module Name	Introduction to Particle of Physics
Code	MFF 3114
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Mirza Satriawan, S.Si., M.Si., Ph.D.
Lecturer	Mirza Satriawan, S.Si., M.Si., Ph.D.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Nuclear and Particle Physics II (MFF 3206)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude

	them for appropriate decision-making, both in familiar and new problems.
	CO 1 : Students can explain concepts and solve cases in elementary particles in standard models. Elementary particle dynamics: electromagnetic interactions, weak interactions, and strong interactions., Relativistic kinematics. Group symmetry and conservation law, flavor symmetry, C, P, and T symmetry, Bond states Positronium, quarkonium, meson, and baryon.
Course outcomes (CO)	CO 2 : Students can explain concepts and solve cases in cross-section and half-life, calculate Feynmann diagrams, Feynmann rules for quantum electrodynamics, Quantum electrodynamics for hadrons and quarks, Parton Model, and Bjorken Scaling.
	CO 3 : Students can explain concepts and solve cases in Feynmann's Rules for Quantum Chromodynamics and Asymptotic Freedom. Weak interactions: weakly charged and neutral interactions for leptons and quarks.
	CO 4 : Students can explain concepts and solve cases in electroweak unification, Lagrangian formulations, local Tera field theory, Mass terms, and the Higgs mechanism.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
	Main References :
Reading list	1. David J. Griffiths, 2008, Introduction to Elementary Particles, 2nd edition, John Wiley and Sons.
	2. Donald H. Perkins, 2000, Introduction to High Energy Physics, 4th edition Cambridge Univ. Press.

	1 Elementary particles in the standard model
	Elementary particle dynamics: electromagnetic
	interactions, weak interactions, and strong
	interactions, weak interactions, and strong
	Deletivistic Kinemetice Oursestry, group and
	2. Relativistic Kinematics. Symmetry, group and
	conservation law, flavor symmetry, C, P, and I
	symmetry.
	3. Bound states: Positronium, quarkonium, meson and baryon.
	 Cross-section and half-life, Feynmann diagram calculations.
Content	5. Feynmann's rules for quantum electrodynamics,
Content	6. Quantum electrodynamics for hadrons and
	quarks.
	7. The Parton Model and Bjorken Scaling.
	8. Feynmann's rules for quantum chromodynamics,
	9. Asymptotic freedom.
	10. Weak interactions: weakly charged and neutral
	interactions for leptons and quarks.
	11. Electroweak bonding.
	12. The formulation of the ban
	13. Local Tera field theory
	14. The mass term and the Higgs mechanism.
	Cognitive : Midterm Exam, Final Exam, Quiz,
Examination forms	Assignments
	Psychomotor :
	Affective :

65. MFF 3284 - Reactor of Physics

Module Name	Reactor of Physics
Code	MFF 3284
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Dwi Satya Palupi
Lecturer	Dr. Dwi Satya Palupi., Dr. Sholihun, Tim dari PRTA BRIN Yogyakarta.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Nuclear and Particle Physics I (MFF 2205)
Module objectives/intended learning outcomes PLO	PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions

	to physical problems.
	PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
	CO 1 : Able to explain the working principle of power reactors, then classify reactor types and explain the advantages and disadvantages of reactor types
	CO 2 : Able to explain the branches of science that play a role in reactor physics, the core reactions that occur in power reactors, and the effect of these reactions on power reactors.
Course outcomes (CO)	CO 3 : Be able to mention the essential parts and components of the power reactor and their functions.
	CO 4 : Able to explain the neutron cycle in the reactor core, the processes that occur in the reactor core at critical, sub-critical, and supercritical conditions,
	CO 5 : Able to explain and solve neutron transport equations in various cases and analyze the relationship between power and the factors that affect changes in power as a function of time.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References :
	1. J.J. Duderstat dan L.J. Hamilton, 1976, Nuclear Reactor Analysis, John Wiley & Sons,Inc,New York USA.
	2. website url batan: http://irlkartini.batan.go.id
fission reaction power source: comparison of	
---	-----
fission reactors with other power plants,	
branches of science related to fission reactors	
types of fission reactors	
2. The nuclear reactions that occur in the fission	
reactor core and their effect on reactor power:	
neutron capture and neutron reactions, fission	
reactions.	
3. Nuclear reactions that occur in the fission reac	tor
core and their effects on reactor power: alpha,	
gamma, beta decay, microscopic cross-section	۱S,
macroscopic cross-sections, and scattering.	
4. Components of a fission reactor: reactor core,	
coolant, moderator, NSSS system.	
5. Components of a fission reactor: reactor core,	
6 Neutron cycle: formula factor -4, factor 6, road	or
size multiplication factor and its effect on the	
reactor critical reactor subcritical supercritica	I
7 Triga-Mark Reactor Experiment with Kartini	1
Reactor	
8. Triga Reactor Experiment - Mark with Kartini	
Reactor	
9. Triga - Mark Reactor Experiment with Kartini	
Reactor	
10. Triga-Mark Reactor Experiment with Kartini	
Reactor	
11. Triga-Mark Reactor Experiment with Kartini	
Reactor	
12. Neutron transport equation: factors affecting the	е
neutron flux in the reactor core and its bounda	У
conditions, diffusion approach, and boundary	
13 Solving the neutron diffusion equation in variou	19
cases the balance between fuel and reactor	10
size.	
14. Reactor kinetic equations affect reactor power	
hourly equations, and reactor reactivity.	
Cognitive : Midterm Exam, Final Exam, Assignment	S
Psychomotor : Project Results	
Affective : Attendance	

66. MFF 3288 - Radiation Protection

Module Name	Radiation Protection
Code	MFF 3288
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Dwi Satya Palupi
Lecturer	Dr. Dwi Satya Palupi., Dr. Mitrayana
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Nuclear and Particle Physics I (MFF 2205)
Module objectives/intended learning outcomes PLO	PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems.

	alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
	CO 1 : Able to name the types of ionizing radiation, explain the radiation's interaction with matter, explain the radiation's penetrating power in a material, and then arrange the order of matter in a material so that radiation does not penetrate the material.
	CO 2 : Able to name units of radiation used in radiation protection and explain the biological effects of radiation at the cellular, tissue, and organ level, the difference between stochastic and deterministic effects, as well as explain radiation sources and the principles of radiation protection.
Course outcomes (CO)	CO 3 : Able to explain the principles of radiation detection for various types of radiation and the working principles of radiation detection devices.
	CO 4 : Able to mention the dangers of radiation from outside and inside the body, then explain and arrange radiation protection procedures for radiation hazards from outside and inside the body.
	CO 5 : Able to explain the use of radiation in industry and its radiation protection and able to explain the use of radiation in the medical field and its radiation protection.
	Offline (LCD, PPT Slide, Whiteboard, Laptop) and
Media employed	Online (Zoom Meeting, Google Meet, Google Classroom)
	Main References :
Reading list	 Martin, Alan, Sam Harbison, Karen Beach, dan Peter Cole, (2012), An Introduction to Radiation Protection, 6th ed., Hodder Arnold, Hodder Education, UK.
	2. Ahmed, Syed Naeem, (2015), Physics and Enginering of Radiation Detection, 2nd ed., Elsevier Inc., USA.

	1.	Types of ionizing radiation: radiation from
		charged particles such as alpha and beta, photon
		radiation such as gamma and x-rays, and
		neutron radiation.
	2.	The interaction of radiation of photons (gamma
		and x-rays), charged particles (alpha and beta),
		and neutrons and the radiation range of photons
		(gamma and x-rays), charged particles (alpha
		and beta), and neutrons in a material.
	3.	Radiation units are used in radiation protection.
	4.	Radiation biological effects, stochastic effects,
		and deterministic effects
	5.	Radiation sources and the principle of radiation
		protection. (according to ICRP).
	6.	Radiation hazards from outside the body,
		controlling and monitoring radiation for radiation
		hazards from outside the body.
	7.	Radiation hazards from outside the body,
		controlling and monitoring radiation for radiation
		hazards from outside the body.
	8.	Radiation hazards from within the body, radiation
Content		control, and monitoring for radiation hazards from
	_	within the body.
	9.	Principles of radiation detection for various types
		of radiation, and radiation detection devices and
	40	their working principles.
	10.	Radiation detection principles for various types of
	11	The use of radiation in industry and radiation
		protection in the industry, as well as the use of
		radiation in the medical field and its radiation
		protection.
	12.	The use of radiation in industry and radiation
		protection in the industry, as well as the use of
		radiation in the medical field and its radiation
		protection.
	13.	The use of radiation in industry and radiation
		protection in the industrial sector, as well as the
		use of radiation in the medical field and its
		radiation protection.
	14.	Emergency radiology

Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor :
	Affective : Attendance

67. MFF 3436 - Modern Acoustics

Module Name	Modern Acoustics
Code	MFF 3436
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Mitrayana
Lecturer	Dr. Mitrayana., Dr. A. Ali Joko Wasono
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude

	them for appropriate decision-making, both in familiar and new problems.
	CO 1 : Students can explain concepts and solve cases of Acoustic wave propagation in various mediums (gas, liquid, and liquid).
Course outcomes (CO)	CO 2 : Students can explain concepts and solve cases of the working principle of acoustic transducers.
	CO 3 : Students can work in groups to study the development of the latest (Modern) Acoustic Theories and Applications.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References :
	 Kinsler, Frey, Copper, Sanders, 2000, Fundamentals of Acoustics, Fourth Edition, John Wiley and Sons New York. Rossing, 2007, Hand Book of Acoustic, Springer Science+Business Media, LLC New York.
	3. Morse. P, dan K.U. Ingard 1968. Theoretical Acoustic, Mc Graw Hill.
Content	 Introduction: Acoustics: The Science of Sound, Sounds We Hear, Sounds We Cannot Hear: Ultrasound and Infrasound, Sounds We Should not Hear. Environmental Noise Control, Sound Aesthetics: Music, Human Voices: Speech and Singing, How We Hear: Physiological and Psychological Acoustics, Acoustics, Architecture, Harnessing Sound: Physical and Engineering Acoustics, Medical Acoustics, Sounds from the Sea. Basic linear acoustics: Continuum Mechanics Equations, Linear Acoustic Equations, Variation Formulations, Constant Frequency Waves, Plane Waves, Sound Attenuation, Acoustic Intensity and Power, Impedance, Reflection and Transmission, Spherical Waves, Cylindrical Waves, Simple

	Sound Sources, Integral Equations in Acoustics,
	Waveguides, Channels, and Resonators, Rav
	Acoustics, Diffraction, Parabolic Equation
	Methods
	5. Atmospheric Sound Propagation: A Brief History
	of Outdoor Acoustics, Applications of Outdoor
	Acoustics, Diffusion Loss, Atmospheric
	Absorption, Diffraction and Resistance, Soil
	Effects, Attenuation Through Trees and Foliage,
	Effects of Wind and Temperature Gradients on
	Outdoor Sound
	6. Underwater Acoustics: Marine Acoustic
	Environment, Physical Mechanisms, SONAR and
	SONAR Equations, Sound Propagation Models,
	Quantitative Description of Propagation, ONAR
	Array Processing, Acoustics, and Marine Animals
	7. Physical Acoustics: Theoretical Overview,
	Physical Acoustic Applications, Equipment,
	Surface Acoustic Waves, Nonlinear Acoustics
	8. Thermoacoustics/Photoacoustics: History,
	Concepts, experimental methods, and their
	applications
	9. Acoustic- Mechanical- Electrical Analogy
	10. Microphone
	11. Loudspeaker
	12. Sound Storage Media
	13. Recording Technique
	14. Audio signal processing
C	ognitive : Midterm Exam, Final Exam, Quiz,
Examination forms As	ssignments
P:	sychomotor :
	ffective :

68. MFF 3680 - Introduction to Nanoscience

Module Name	Introduction to Nanoscience
Code	MFF 3680
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr.Eng. Edi Suharyadi, S.Si., M.Eng.
Lecturer	Dr.Eng. Edi Suharyadi, S.Si., M.Eng., Prof. Dr. Eng. Kuwat Triyana, M.Si.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Atomic and Molecular Physics (MFF 2310)
Module objectives/intended learning outcomes PLO	PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems.

	CO 1 : Know and understand the concept of
	nanoscience and technology
Course outcomes (CO)	CO 2 : Knowing and understanding the concept of
	physics of compressed matter in nanosystems
	CO 3 : Knowledge and understanding of
	nanostructures and their characteristics
Madia amplexed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and
	Classroom)
	Main References :
	1 Develop Noteloon Negestructures and
	Nanotechnology, Cambridge University Press.
Boading list	2015. (e-book is available).
Reading list	2. Vladimir V. Mitin, Dimitry I. Sementsov, Nizami
	D. Vagidov, Quantum Mechanics of Nanostructures, Cambridge University Press
	Cambridge UK, 2010 (e-book is available).
	1 Introduction to the concent of personicing and
	nanotechnology
	2. The concept of size-dependent (Bulk Material
	and Film)
	3. Summary of the concept of physics of
	(Mooting of states, electronic structure, phonons)
	loint Density of States)
_	4. Study of nanostructures (quantum dot, quantum
Content	well and quantum wires)
	5. Physics of nanostructures
	6. Summary Fabrication of nanostructures
	(PLD/Pulse Laser Deposition
	7. MBE/Molecular Beam Epitaxy
	8. SAM/Self-Assembly Material)
	9. Summary of Nanostructure Characterization
	(AFIVI/Atomic Force Microscopy

	11. SE/Spectroscopy Ellipsometry).
	Cognitive : Midterm Exam Final Exam Ouiz
Examination forms	Assignments
	Psychomotor:
	Affective :

69. MFF 3810 - Capita Selecta in Material Physics

Module Name	Capita Selecta in Material Physics
Code	MFF 3810
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Prof. Dr. Yusril Yusuf
Lecturer	Prof. Dr. Yusril Yusuf., Dr. Juliasih Partini., Dr. Ari Dwi Nugraheni., Dr. Ahmad Kusumaatmaja.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Solid State Physics I (MFF 2601)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various

	alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
	CO 1 : Students can explain about Biomaterials and Liquid Crystals
	CO 2 : Students can explain the fabrication and characterization of metamaterials.
	CO 3 : Students can explain about protein physics and its characterization
	CO 4 : Students can explain polymers and their applications in physics.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
	Main References :
Reading list	1. Related international journals (accessed from http://lib.ugm.ac.id, as well as international journal sources other)
Content	 Biomaterial Physics Biomaterials and Bioplastics Research in Liquid Crystals Introduction to Metamaterial Metamaterial Fabrication Characterization of Metamaterials Protein Physics Characterization in protein physics polymer introduction Polymer applications in materials physics
Examination forms	<i>Cognitive</i> : Midterm Exam, Final Exam <i>Psychomotor</i> : <i>Affective</i> :

70. MFF 3812 - Materials Analysis Method

Module Name	Materials Analysis Method
Code	MFF 3812
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Chotimah, M.Si.
Lecturer	Dr. Chotimah, M.Si., Dr.Eng. Edi Suharyadi, S.Si., M.Eng.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 3 x 50 = 150 minutes per week. Exercises and Assignments : 3 x 60 = 180 minutes per week. Private Learning : 3 x 60 = 180 minutes per week.
Credits points	3 SKS ~ 4.8 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Solid State Physics I (MFF 2601), Quantum Physics I (MFF 2034)
Module objectives/intended learning outcomes PLO	PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems.

	PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Students can determine the characteristics that must be known about research materials and the research process results. CO 2 : Students can choose the method needed to find out detailed information about the character of a material CO 3 : Students can anticipate the condition of the material whose properties will be known. CO 4 : Students can analyze the results shown by supporting tools
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	 Main References : McMohan, G., 2007: Analytical Instrumentation: A Guide to Laboratory, Portable and Miniaturized Instruments, ohn Wiley & Sons Ltd, England. Skoog, D.A. dan West, D.M., 1980: Principles of Instrumental Analysis, Sounders College, Philadelphia.

	1	Introduction: Basics of Spectroscopy GEM
	1.	interaction with matter LIV Via Spectroscopy
		Interaction with matter, 0v-vis Specifoscopy.
	Ζ.	Ov-vis speciroscopy, and calculating the Energy
		Gap from the UV-VIS curve, Assignment review
		paper using UV-Vis characterization
	3.	FT-IR spectroscopy, Raman spectroscopy
	4.	Atomic Absorption Spectroscopy (AAS) and
		Atomic Fluorescence Spectrometry (AFS)
	5.	Gas Chromatography (GC), High Performance
		Liquid Chromatography (HPLC), mass
		Spectroscopy (MS)
	6.	Nuclear Magnetic Resonance (NMR), Exposure
		group assignment
Content	7.	Thermogravimetric Analysis (TGA), Differential
		Scanning Calorimetry (DSC)
	8.	Optical Microscopy, confocal Microscopy
	9.	Scanning Electron Microscopy (SEM),
		Transmission Electron Microscopy (TEM)
	10	. Scanning Probe Microscopy (SPM), Scanning
		Tunneling Microscopy (STM), Atomic Force
		Microscopy (AFM).
	11	. Electrochemical Instruments, Potentiometry,
		voltammetry, conductimetry
	12	. X-ray Diffraction (XRD)
	13	. Electronic Impedance Analyzer
	14	. Student assignments (Group and Independent)
	Com	attive Midtorm Even Final Even Assignments
Examination forms		huve . whilem Exam, Final Exam, Assignments
	r Syc	
	Aneo	cuve :
	1	

71. MFF 3820 - Computational Material of Physics

Module Name	Computational Material of Physics
Code	MFF 3820
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr. Iman Santoso
Lecturer	Dr. Iman Santoso., Dr. Sholihun
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 3 x 50 = 150 minutes per week. Exercises and Assignments : 3 x 60 = 180 minutes per week. Private Learning : 3 x 60 = 180 minutes per week.
Credits points	3 SKS ~ 4.8 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Computational Physics (MFF 2027), Solid State Physics I (MFF 2601)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Students can apply computational methods of numerical derivatives, numerical integration, and root search in extracting dielectric constant values from reflections and equilibrium positions of diatomic molecules. CO 2 : Students can apply computational methods of numerical derivatives, numerical integration, Discrete Fourier Transform, and Fast Fourier Transform in

	 calculating linear response functions (e.g., optical constant, dielectric constant) of a material as well as the Kramers-Kronig relation that connects the real and imaginary parts of the linear response function. CO 3 : Students can apply computational methods of numerical derivatives, numerical integration, Numerov methods, factorization, iteration, and matrix diagonalization (similarity transformation, Householder, and Jacobi Rotation) in solving the time-independent Schrodinger equation, which will produce band diagrams of 1D material systems and 2d. CO 4 : Students can apply computational optimization methods like Gauss-Newton, Gradient descent, Levenberg-Marquardt, and BFGS (Broyden–Fletcher–Goldfarb–Shanno) to optimize the geometry of a material. Offline (LCD, PPT Slide, Whiteboard, Laptop) and
Media employed	Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References : 1. Richard Martins, 2004, Electronic Structure, Cambridge University Press 2. J.M., Thijssen, 1999, Computational Physics, Cambridge University Press 3. Tao Pang, An introduction to computational physics, Cambridge press (2006)
Content	 INTRODUCTION: the role of computing in explaining fundamental and applied problems in material physics, namely linear response functions, optical constants, dielectric constants, Kramers-Kronig relations), band diagrams of 1D and 2D systems, equilibrium positions, and optimization of the geometry of materials. SUMMARY OF NUMERIC METHODS: Numerical derivative (finite difference method), numerical integration (trapezium and Simpson1/3), Discrete Fourier Transform, and Fast Fourier Transform TIME DEPENDENT SCHRODINGER EQUATION: Numerical solution using the second-order Numerov method Timeless SCHRODINGER EQUATION: Numerical solution using matrix diagonalization method (similarity transformation, Householder transformation, Jacobi rotation)

	5.	POWER LEVEL DIAGRAM FOR 1D and 2D
		SYSTEM PARTICLES: Bloch's Theorem,
		Application of the diagonalization method in
		obtaining the band structure of 1D and 2D
		systems
	6.	Introduction to the tight-binding
		method: Numerical methods for solving band
		structures use tight-binding, integral transfer,
		integral overlap, and orbital overlap methods.
	7.	Geometry Optimization
	8.	Geometry Optimization
	9.	Geometry Optimization
	10	. DFT
Examination forms	Cogi	nitive : Midterm Exam, Final Exam, Assignments
Examination forms	Affe	ctive :

72. MFF 3872 - Biophysics

Module Name	Biophysics
Code	MFF 3872
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Drs. Wagini, S.U.
Lecturer	Drs. Wagini, S.U., Dr. Sc. Ari Dwi Nugraheni
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Thermodynamics (MFF 1053), Waves (MFF 1405)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Students can explain the concepts of physics in biology CO 2 : Students can explain concepts and relate cases in biology from a physics perspective.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)

Reading list	Main References : 1. Philip Nelson, Biological Physics, W. H. Freeman, 1st Edition, 2007 2. Roland Glaser, Biophysics, Springer, 2nd edition, 2012.	
Content	 RPKPS explanation, introduction Components in biological systems Approach to Statistical Physics in biological systems Diffusion physics in biology and surface phenomena Life in the study of Reynolds Numbers Entropy and Energy in Biology The environment and its effects on humans Mechanics in cell biology Sequences in cell biology Photobiophysics Radiation and its effects on humans Effects of magnetic fields on humans 	
Examination forms	Cognitive : Midterm Exam, Final Exam, Quiz, Assignments Psychomotor : Project Results Affective :	

73. MFF 38776 - Radiographic of Physics

Module Name	Radiographic of Physics
Code	MFF 38776
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Drs. Gede Bayu Suparta, M.S., Ph.D.
Lecturer	Drs. Gede Bayu Suparta, M.S., Ph.D.
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Know and understand the history of radiography and the application of radiography in the industrial, medical, and laboratory fields CO 2 : Know and understand the fundamental theories in Radiography Physics CO 3 : Know and understand how the radiographic system CO 4 : Knowledge and understanding of digital

	radiography CO 5 : Knowing and understanding the application of Radiography
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References : 1. Buzug, T.M., 2008. Computed Tomography: From Photon Statistics to Modern Cone-Beam CT, SpringerVerlag Berlin Heidelberg. 2. National Academic of Science, 1996, Mathematics and Physics of Emerging Biomedical Imaging, National Academic Press, Washington, Ch. 1-6.
Content	 History of Radiography, Applications of radiography (laboratory, medical and industrial) Basic Theory: Atoms and Atomic Structure Basic Theory: Electricity and Magnetism Basic Theory: Electromagnetic radiation and the interaction of radiation with matter Radiographic System: X-ray/gamma generator Radiography System: Detector and detection system Fluorescent radiography and film radiography Digital radiography: Digital images and digital scanners Digital radiography: Live digital radiography Digital radiography: Teleradiology Radiographic Applications: NDT Radiographic applications: Inspection of goods, Inspection of micro materials/objects radiology (medical)
Examination forms	Cognitive : Midterm Exam, Final Exam, Quiz, Assignments Psychomotor : Affective :

74. MFF 3882 - Energy

Module Name	Energy
Code	MFF 3882
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Drs. Wagini, S.U
Lecturer	Drs. Wagini, S.U , Dr. Sc. Ari Dwi Nugraheni , ,
Language	Indonesian
Relation to curriculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Thermodynamics (MFF 1053), Waves (MFF 1405)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course outcomes (CO)	 CO 1 : Students can explain the concept of physics in the context of energy use and its consequences for the environment CO 2 : Students can explain some examples of energy sources available in the surrounding environment

	CO 3 : Students can explain the concept of energy conservation techniques by focusing on a physics approach.
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References : 1. Robert L Jaffe dan Wangshington Taylor, The physics of energy, Cambridge university press, 2018 2. Functional Material for Sustainable energy applications, Woodhead publishing, 2012
Content	 Explanation of RPKPS, introduction to energy in general, and units and scales in energy Thermal energy, energy in chemical systems, and CO2. flow processes Entropy and temperature and their application to machines Natural style; weak interaction and beta decay Nuclear energy sources: fission and fusion Energy in the universe; sunlight Photovoltaic solar cells Biological energy: energy from moving water Energy and Climate Earth's climate; past, present, and future Energy change Energy storage and conservation
Examination forms	Cognitive : Midterm Exam, Final Exam, Assignments Psychomotor : Affective :

75. MFF 3892 - Science and Technology Entrepreneurship

Module Name	Science and Technology Entrepreneurship
Code	MFF 3892
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Drs. Gede Bayu Suparta, M.S., Ph.D.
Lecturer	Drs. Gede Bayu Suparta, M.S., Ph.D. , Prof. Dr. Harsojo, SU., M.Sc.
Language	Indonesian
Relation to curiculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the	Registered in this course
examination regulations	Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	None
Module objectives/intended learning outcomes PLO	PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course cutcomes (CO)	 CO 1 : Knowing and Understanding the Philosophy of Entrepreneurship and the development of an entrepreneurial spirit CO 2 : Know and understand Education oriented to job creators and leaders with an entrepreneurial spirit CO 3 : Know and understand Intellectual Property Rights and Contract Law CO 4 : Knowing and understanding Entrepreneurship and how to build good relations and selling techniques CO 5 : Knowing and understanding how to set up a small business and how to manage a small and medium business

	CO 6 : Knowing and understanding about Ethics in
	entrepreneurship
Media employed	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	 Main References : Jati, B.M.E; Priyambodo, T.K. , 2011: Kewirausahaan (Technopreneurship) untuk Mahasiswa Sains dan Teknologi, edisi 1, Penerbi Andi, Yogyakarta Meridith, G.G., dkk., 2000: Kewirausahaan Teori dan Praktek, PT Pustaka Binaman Pressindo, Jakarta Suryana, 2001: Kewirausahaan, Penerbit Salemba 4, Jakarta Waldiono, dkk., 1999: Entrepreneurship (EPS) di Perguruan Tinggi, Proyek Pemandu EPS di Perguruan Tinggi, LP3 – UGM, Yogyakarta Wibowo, dkk., 2000: Petunjuk Mendirikan Perusahaan Kecil, Penerbit Swadaya, Jakarta Wibowo, dkk., 2000: Pedoman Mengelola Perusahaan Kecil, Penerbit Swadaya, Jakarta Wijandi,S., 2000: Pengantar Kewiraswastaan, Sinar Baru, Algensindo, Bandung Additional References : Junus, E., 1999: Undang-Undang dan Informasi Umum Perlindungan Hak Atas Kekayaan Intelektual, Jurnal P & PT, Vol.1, No.9, 1999, Jakarta
	2. Sutomo, B.P.G., 1997: Hukum Perjanjian pada Jual Beli Pesawat Terbang Produksi IPTN, Skripsi S1 Ilmu Hukum Perdata UGM, Yogyakarta.
Content	 Entrepreneurship Philosophy Entrepreneurial Spirit Development Job Creation-Oriented Education Entrepreneurial leader Intellectual property rights Legal Agreement Entrepreneurship Good relations and selling techniques Setting up a small business Managing Small and Medium Enterprises Ethics in entrepreneurship

Examination forms	Cognitive : Midterm Exam, Final Exam, Quiz, Assignments Psychomotor : Affective :
-------------------	--

76. MFF 4034 - Advanced Quantum Mechanics

Module Name	Advanced Quantum Mechanics
Code	MFF 4034
Semester(s) in which the module is taught	EVEN semester
Module designation	Undergraduate stage
Person responsible for the module	Dr.rer.nat. Muhammad Farchani Rosyid, M.Si.
Lecturer	Dr.rer.nat. Muhammad Farchani Rosyid, M.Si.,,,
Language	Indonesian
Relation to curiculum	Elective Courses for undergraduate program in Bachelor of Physics
Teaching methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods
Workload	 Lectures : 2 x 50 = 100 minutes per week. Exercises and Assignments : 2 x 60 = 120 minutes per week. Private Learning : 2 x 60 = 120 minutes per week.
Credits points	2 SKS ~ 3.2 ECTS
Requirements according to the examination regulations	Registered in this course Minimum 75% attendance in this course
Required and recommended prerequisites for joining the module	Quantum Physics I (MFF 2034)
Module objectives/intended learning outcomes PLO	 PLO 2 - Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. PLO 3 - General Skills. Able to communicate the results of problem studies and physical behavior both in writing and verbally, as well as being able to lead and collaborate at various levels of roles in a team. PLO 5 - Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.
Course cutcomes (CO)	CO 1 : Understand symmetry in quantum mechanics and master the concepts of groups that describe this symmetry: spatial translational symmetry, rotational

Media employed	 symmetry, time shift symmetry, space translation group, rotation group, dynamic group, space translation generator, rotation generator, and time shift generator. CO 2 : Mastering and applying path integral formulations for quantum mechanics: path integrals, propagators, formulations for free particles, and harmonized vibrations. CO 3 : Mastering and applying relativistic quantum mechanics: Klein Gordon equation, Dirac equation, probability density and probability current density problems, antiparticle interpretation, Dirac equation covariance, symmetry generator in relativistic quantum mechanics . Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)
Reading list	Main References : 1. Mueller-Kirsten, H.W, 2006, Introduction to Quantum Mechanics: SchroedingerEquation and Path Integral, World Scientific, Singapore. 2. Greiner, W. dan Mueller, B., 1994, Quantum Mechanics: Symmetries, Springer-Verlag, Berlin. 3. Greiner, W., 1994, Relativistic Quantum Mechanics: Wave Equations, Springer-Verlag, Berlin.
Content	 spatial translational symmetry, rotational symmetry, time shift symmetry, Space translation group, rotation group, dynamic group, Space translation generator, rotation generator, and time shift generator. The path integral, propagator, the formulation for free particles and harmonized vibrations. Klein-Gordon equation, Dirac equation, the problem of opportunity density and opportunity flow density, antiparticle interpretation, covariance of the Dirac equation, a symmetry generator in relativistic quantum mechanics

Examination forms	Cognitive : Midterm Exam, Final Exam Psychomotor : Affective :
-------------------	---