SEMESTER LEARNING ACTIVITY PLANS (SLAP) SEMESTER EVEN 2022/2023

Physics Undergraduate Study Program Physics Department Advanced Quantum Mechanics MFF 4034/ 2 Credits

Lecturer Coordinator: Dr.rer.nat. Muhammad Farchani Rosyid, M.Si.

UNIVERSITAS GADJAH MADA FACULTY OF MATHEMATICS AND NATURAL SCIENCE 2022

Universitas Gadjah Mada Faculty of Mathematics and Natural Science Physics Department / Physics Undergraduate Study Program Semester EVEN 2022/2023

Document Number :

.....

SEMESTER LEARNING ACTIVITY PLANS (SLAP)

Code	Course Name	Credits (Credits)	Semester	Status	Pr	erequisite	
MFF 4034	Advanced Quantum Mechanics	<i>T: 2 P:</i>	EVEN	Elective	Quantum	Physics I (MFF 2034)	
Short Description	This lect quantum med translational group, dynam path integral vibrations. R density, and c generators in	s lecture has three topics: symmetry in quantum mechanics, the formulation of path integrals for n mechanics, and relativistic quantum mechanics. Symmetry in quantum mechanics: spatial onal symmetry, rotational symmetry, time shift symmetry, space translation group, rotation ynamic group, space translation generator, rotation generator, time shift generator. Formulating egrals for quantum mechanics: propagator, formulation for free particles, and harmonic ns. Relativistic quantum mechanics: Klein-Gordon equations, Dirac equations, probability and current density problems, antiparticle interpretation, Dirac equation covariance, symmetry ors in relativistic quantum mechanics.					
Program	PLO 2Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems.gram rning comesGeneral Skills. Able to communicate the results of problem studies and physical behavior both in writing and verbally, as well as being able to lead and collabor various levels of roles in a team.						
Learning Outcomes (PLO) Imposed							
on the Course	PLO 5	Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.					
	After completing this course, students are expected to be able to:						
Course	<i>CO1</i> Understand symmetry in quantum mechanics and master the concepts of groups that describe this symmetry: spatial translational symmetry, rotational symmetry, time shi symmetry, space translation group, rotation group, dynamic group, space translation generator, rotation generator, and time shift generator.						
Outcomes (CO)	CO2	Mastering and applying path integral formulations for quantum mechanics: path integrals, propagators, formulations for free particles, and harmonized vibrations.					
CO3Mastering and applying relativistic quantum mechanics: Klein Go equation, probability density and probability current density probl interpretation, Dirac equation covariance, symmetry generator in mechanics						lon equation, Dirac ns, antiparticle lativistic quantum	
The Correlation		Learning M	laterials	Learning M	lethods	Time Allocation	
of CO to Learning Materials and	CO 1	spatial translational s rotational symmetry, symmetry,	symmetry, time shift	TCL-SCL	mixed	6X50 minutes	
Methods, and Time Allocation	<i>CO</i> 1	Space translation gro group, dynamic grou	oup, rotation p,	TCL-SCL	mixed	4X50 minutes	

	<i>CO 1</i> Sp	Space translation generator, rotation		TCL-SC	TCL-SCL mixed			
	generator, and time snift generator. Midterm exam/Project Task Results/Case Analysis Results							
		e path integral	propagator	TCL-SC	TCL-SCL mixed			
	CO 2 the	e formulation for	r free particles and	TCL-SC	TCL-SCL mixed			
	ha	rmonized vibrat	ions.					
	CO 3 K	Klein-Gordon equation, Dirac		TCL-SC	TCL-SCL mixed			
	eq	equation,				21100 11010005		
		and opportunity flow density		ICL-SCL mixed		2X50 minutos		
	an	antiparticle interpretation.				22150 minutes		
	<i>CO 3</i> co	covariance of the Dirac equation, a		TCL-SCL mixed				
	sy	symmetry generator in relativistic				2X50 minutes		
	qu	quantum mechanics						
Looming	Final exams/ Project Task Results/Case Analysis Results							
Methods	learning/PBL/other SCL methods							
Student	Students get an overview and simultaneously carry out axiomatic ways of thinking, making							
Learning	mathematical inferences, and their application in the formulation of physical theories.							
Experience								
Access to Learning Media/ LMS and Offline and Online Percentage	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)							
	Assessment	Assessment	Criteria/	CO1	CO2	CO3		
	Niethods Participatory	Percentage	Indicators					
	Activity*							
Assessment Methods and Synchronizatio n with CO	Project							
	Results/ Case							
	Study Results/ PRI Results*							
	Cognitive							
	Midterm Exam	50		\checkmark				
	Final Exam	50			\checkmark	\checkmark		
	Total	100						
	^{*'} can also be obtained from the Midterm or Final Exam as the result of participatory activities or project/ case study results. According to IKU 7, the percentage of project results/ case study/ PBL results is at least 50%.							

References	 Main References; 1. Mueller-Kirsten, H.W, 2006, Introduction to Quantum Mechanics: SchroedingerEquation and Path Integral, World Scientific, Singapore 2. Greiner, W. dan Mueller, B., 1994, Quantum Mechanics: Symmetries, Springer-Verlag, Berlin 3. Greiner, W., 1994, Relativistic Quantum Mechanics: Wave Equations, Springer-Verlag, Berlin. 					
Lecturers (<i>Team</i> <i>Teaching</i>)	1. Dr.rer.nat. Muhammad Farchani Rosyid, M.Si.					
Authorization	Date of Drafting	Lecturer Coordinator	Head of Curriculum Committee	Head of Study Program		
		Dr.rer.nat. Muhammad Farchani Rosyid, M.Si.		Dr. Eng. Ahmad Kusumaatmaja, S.Si., M.Sc.		