SEMESTER LEARNING ACTIVITY PLANS (SLAP) SEMESTER ODD 2022/2023

Physics Undergraduate Study Program Physics Department Quantum Mechanics MFF 4033/ 2 Credits

Lecturer Coordinator: Dr.rer.nat. Muhammad Farchani Rosyid, M.Si.

UNIVERSITAS GADJAH MADA FACULTY OF MATHEMATICS AND NATURAL SCIENCE 2022

Universitas Gadjah Mada Faculty of Mathematics and Natural Science Physics Department / Physics Undergraduate Study Program Semester ODD 2022/2023

Document Number :

.....

SEMESTER LEARNING ACTIVITY PLANS (SLAP)

Code	Course Name	Credits (Cred	its)	Semester	Status	Prerequisite			
MFF 4033	Quantum Mechanics	<i>T: 2</i>	<i>P:</i>	ODD	Elective	Quantum of Physics I (MFF 2034)			
Short Description	(abstract) forn General descr standard, dyn Hilbert space orthonormalit Linear operat exponential o self-adjoint an Postulations of quantum, exp Quantum dyn time shift ope Position repre- momentum, H position and n Schroedinger	s course leads students to master and understand Quantum Mechanics in a formal and general) form. description of mechanics: state space, Observable, expected value, deviation							
Program Learning	arning indefinition physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems. itcomes Long Life Learning. Able to analyze various alternative solutions to physical problems. ID) Imposed mathematical methods in finding solutions to physical problems.					ysics and related			
Outcomes (PLO) Imposed on the Course						e solutions to physical			
After completing this course, students are expected to be able to:									
	<i>C01</i>	Understand the general description of mechanics: state space, Observables, expected values, standard deviations, dynamics							
Course	C02	Mastering and applying the concept of Hilbert space as a physical space: complex vector space, scalar product, norm, orthogonality and orthonormality, orthonormal basis and Fourier series, completeness of scalar product space.							
Outcomes (CO) CO3 Mastering and applying the concepts of linear operation operators, self-adjoint operators, unitary operators, e equations, degeneration, self-adjoint and self-adjoint					f linear operators i y operators, expor	ponential operators, self-value			
	CO4 Mastering and applying the postulations of quantum mechanics: quantum si quantum observables, quantum probability, expected value and standard de Heisenberg uncertainty, and quantum dynamics.					hanics: quantum state space,			

	<i>C05</i>	Mastering and applying quantum dynam Schroedinger equation for time shift ope		ivation of the				
	<i>CO6</i>	Master and apply position representation and momentum representation: external basis position basis, and momentum basis, Fourier transform, position operator and momentum operator in position and momentum basis, and Schroedinger equation in position and momentum basis.						
	<i>C07</i>	Mastering and applying Schroedinger Drawing and Heisenberg Drawing.						
		Learning Materials	Learning Methods	Time Allocation				
	CO 1	1. Overview of mechanics in general: state space, Observables, expected values, standard deviations, dynamics. 2. Examples		2X50 minutes				
	<i>CO</i> 2	Hilbert space as a state space: a complex vector space,		2X50 minutes				
	<i>CO</i> 2	Scalar product, norm, orthogonality and orthonormality, orthonormal basis and Fourier series, and space completeness have a scalar product.	2X50 minutes					
The Correlation of CO to Learning Materials and Methods, and Time Allocation	<i>CO 2</i>	Mastering and applying the concept of linear operators in Hilbert space: adjoint operators, self-adjoint operators, unitary operators, exponential operators,	2X50 minutes					
	<i>CO 3</i>	Self-assessment, degeneracy, self- assessment, and self-adjoint operators and unitary operators.		2X50 minutes				
	<i>CO 3</i>	Postulations of quantum mechanics: quantum state space, quantum observables, quantum probability, expected value, and standard deviation,		2X50 minutes				
	<i>CO 3</i>	Heisenberg uncertainty, quantum dynamics. Examples		2X50 minutes				
	Midterm exam/Project Task Results/Case Analysis Results							
	CO 4	Quantum dynamics: time shift operators, derivation of the Schroedinger equation for time shift operators and state vectors,		2X50 minutes				
	<i>CO</i> 5	Quantum dynamics examples	2X50 minutes					
	CO 6	Position and momentum representatives: external basis, position and momentum basis, Fourier transform, position operator and momentum operator in position and momentum basis, Schroedinger equation in position and momentum basis		2X50 minutes				

		and Momentum R						42	K50 min	nutes
		Mastering and applying Schroedinger Drawing and Heisenberg Drawing. Examples					42	4X50 minutes		
	Final exams/ Project Task Results/Case Analysis Results									
Learning Methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods									
Student Learning Experience	Students get an overview and simultaneously postulate on ways of thinking and drawing conclusions in formulating physical theories.									
Access to Learning Media/ LMS and Offline and Online Percentage	Offline (LCD, Classroom)	PPT Slide, Whiteb	ooard, Laptop) and (Online	(Zoom]	Meeting	g, Goog	le Meet.	, Google	e
	Assessment	Assessment	Criteria/	CO						
	Methods	Percentage	Indicators	1	2	3	4	5	6	7
	Participatory Activity*									
	Activity* Project									
	Results/ Case									
	Study Results	/								
Assessment	PBL Results*									
Methods and	Cognitive				1	1		1	1	
Synchronizatio n with CO	Assignment	10			\checkmark	\checkmark		\checkmark	\checkmark	
	Quiz	10				\checkmark	\checkmark		\checkmark	\checkmark
	Midterm Exam	40		\checkmark	\checkmark	1				
	Final Exam	40					\checkmark	\checkmark	\checkmark	\checkmark
	Total	100								
	^{*)} can also be obtained from the Midterm or Final Exam as the result of participatory activities or project/ case study results. According to IKU 7, the percentage of project results/ case study/ PBL results is at least 50%.									
References		-Tannoudji, C. dkk	c., 2003, Quantum M ssential Quantum M					Press, O	xford	
Lecturers (Team Teaching)	1. Dr.rer	.nat. Muhammad	Farchani Rosyid,							
Authorization	Date of Drafting	Lecturer Coordinator Head of Curriculum Committee Head of Study Progra			ram					

Dr.rer.nat. Muhammad Farchani	Dr. Eng. Ahmad
Rosyid, M.Si.	Kusumaatmaja, S.Si., M.Sc.