SEMESTER LEARNING ACTIVITY PLANS (SLAP) SEMESTER EVEN 2022/2023

Physics Undergraduate Study Program Physics Department Solid State Physics I MFF 2601/ 2 Credits

Lecturer Coordinator:

Moh. Adhib Ulil Absor, S.Si., M.Sc., Ph.D Dr.. Ari Dwi Nugraheni, M.Sc.

UNIVERSITAS GADJAH MADA FACULTY OF MATHEMATICS AND NATURAL SCIENCE 2022

Universitas Gadjah Mada

assignments in the form of homework given.

Faculty of Mathematics and Natural Science Physics Department / Physics Undergraduate Study Program Semester EVEN 2022/2023

Document Number :

.

SEMESTER LEARNING ACTIVITY PLANS (SLAP)

Code	Course Name	Credits (Credits)	Semester	Status	Prerequisite
MFF 2601	Solid State	<i>T: 2</i>	<i>P</i> :	EVEN	Compulsory	Quantum Physics I
	Physics I					(MFF2034)
	The Soli	d State Phy	sics I cours	e is a compulsory	subject for the Bac	helor of Physics study program
	at Gadjah Mada University, which is the first part of a series of Solid Substance Physics lectures. Students can take this course in the odd semester of the third year of study or earlier with the supervisor's approval. Before taking this course, students must have passed the Quantum Physics I course (MFF 2034). A deep understanding of Solid Matter Physics is needed for a physics student, especially those					id Substance Physics lectures.
						or earlier with the supervisor's
						antum Physics I course (MFF
	who will study Condensed Matter Physics and Applied Physics. With the Solid State Physics I course, students are expected to be able to understand the theoretical basis of various phenomena that occur in					
	solid systems and be able to apply them to a particular case involving solid systems. Solid-state physics is a part or branch of the study of condensed matter physics, which specializes in solid-state systems. The study of the properties of solids will involve atomic-scale phenomena, so quantum physics will play a significant role. The fundamental theories that apply to solid-state systems are the theoretical basis underlying materials science, which also has direct applications, for example, in electronic, magnetic, thermo-, and optoelectronic device technology, and so on. Solid materials are composed of atoms in a specific pattern that interact with each other. This interaction produces several essential properties closely related to their use in today's technology, namely mechanical properties (hardness and elasticity) and thermal, electrical, magnetic, and optical properties of solids. Depending on the materials involved					
	and the conditions under which they are formed, the atoms can be arranged in specific geometric patterns					
Short	to form crysta	alline solids	or irregula	ar systems found in	n amorphous solid	s. Much of Solid-State Physics
Description	focuses on crystalline systems because crystalline materials have electrical, magnetic.					ectrical, magnetic, optical, or
Description	mechanical pr	operties that	it can be ex	ploited for enginee	ring purposes. To	assist students in understanding

the topic of study in this lecture, the process of deepening the lecture material is also often added with visual depictions to reduce the difficulty of abstraction in understanding the lecture material. In addition, the learning process is regularly equipped with the provision of assignments or homework or assignments to students to improve problem-solving skills and understanding of course material. Learning is carried out based on a face-to-face schedule in class for 14 weeks, with each week consisting of 100 minutes. Four weeks during the lecture period are used for Mid-Semester Examinations and Final Semester Examinations, each of which is held on a scheduled basis for two weeks by the Academic Section of FMIPA UGM. Evaluation for students for course assessment is carried out summatively and formatively. This is manifested in the form of written exams, both the Mid-Semester Examination and the Final Semester Examination, which take a maximum of 120 minutes. The formative evaluation is realized through independent assignments for each student. The form of independent activity is completing an assignment given to students to be discussed in groups and then completed independently at home in the form of a written report for each assignment. The monitoring process is carried out by looking at student activities during the lecture, such as attendance at lectures, questions and answers and discussions on the material being presented, and student performance in carrying out independent

Program Learning	PLO 2	Knowledge. Able to explain theoretical concepts and principles of classical and modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems.							
(PLO) Imposed on the Course	PLO 5	Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.							
	After completing this course, students are expected to be able to:								
	<i>CO1</i>	Students have the ability in Physics Skills, namely how to formulate and describe (to							
		describe) the physical phenomena being studied and reveal important information in the							
		utilizing various approaches (approximations)							
	<i>C</i> (<i>D</i>)	Students have the ability in Analytical Skills, namely how to pay attention to physics							
Course	02	problems in detail, analyze problems and build arguments logically and carefully.							
Outcomes (CO)	СОЗ	Students have the ability in Investigative Skills, namely how to search for physics							
		problems from various sources and references to understand important information.							
	<i>CO4</i>	Students have the ability in Problem-Solving Skills, namely how to solve a problem							
		with a structured solution (well-defined solutions), formulate a problem carefully, and							
		try other approaches (approaches) to improve solving a challenging problem							
		(challenging problems).	challenging problems).						
		Learning Materials	Learning Methods	Allocation					
	CO 1, CO 2, CO 3, CO 4	Crystal Structure: (i) Type and crystal lattice. (ii) Crystal directions	tions TCL-SCL mixed 2X50						
	<u>CO1CO</u>	An explanation of the dynamics of	TCL SCL mixed						
	2. CO 3.	quantum systems and the time-	TCL-SCL mixed	2X50 minutes					
	CO 4	dependent Schrodinger equation							
	<i>CO 1, CO</i>	X Pay Diffraction: (i) Bragg's law	TCL-SCL mixed						
	2, CO 3,	(ii) Back lattice (iii) Brillouin zone		2X50 minutes					
	<u>CO 4</u>		TCL SCL mixed						
	201,00	X-Ray Diffraction: (111) Brillouin	ICL-SCL mixed	2X50 minutos					
of CO to	2, CO 3, CO 4	structure	2A30 minutes						
Learning	<i>CO 1, CO</i>	Bonds in crystals: (i) Interaction	TCL-SCL mixed						
Materials and	2, CO 3,	Forces and Bond types (ii) Bonding		2X50 minutes					
Methods, and	<i>CO</i> 4	energies in ionic and noble gas bonds							
Time Allocation	<i>CO 1, CO</i>	Lattice Vibrations: (i) One and two- TCL-SCL mixed							
	2, CO 3,	dimensional lattice vibrations, (11)		2X50 minutes					
	C04	Lattice Vibration: (iii) Phonons (iv)	TCL-SCL mixed						
	2. CO 3.	Heat capacity, classical theory.		2X50 minutes					
	CO 4	Einstein model, Debye model.							
	Midterm exam/Project Task Results/Case Analysis Results								
	<i>CO 1, CO</i>	The theory of free electrons in							
	2, CO 3,	metals: (i) Summerfields. quantum	ls. quantum 2X5						
	C04	tneory	TCI SCI mired						
	2, CO 3, CO 4	Energy band theory: (i) Bloch's theorem (ii) Kronig - Penney model	TCL-SCL IIIXEU	2X50 minutes					

	<i>CO 1, CO</i>	Energy band theory	ry: (iii) Speed and	TCL	-SCL mixed			
	2, CO 3, effective mass of electrons (iv)					285	0 minutos	
	<i>CO 4</i> Classification of materials: metals					243	0 minutes	
	insulators, and semiconductors							
	<i>CO 1, CO</i>	Energy band theory	TCL	-SCL mixed				
	2, CO 3,	effective mass of			2.1/5	•••		
	CO 4	Classification of r			223	0 minutes		
		insulators, and ser						
	<i>CO 1, CO</i>	Energy band theor	TCL	-SCL mixed				
	2, CO 3,	effective mass of	electrons (iv)			2.85	2V50 minutes	
	CO 4	Classification of r	naterials: metals,			223	0 minutes	
		insulators, and semiconductors						
	<i>CO 1, CO</i>	01, CO Semiconductors (i) Interinsia			-SCL mixed			
	<i>2, CO 3,</i>	Semiconductors	(1) mumsic			2X5	2X50 minutes	
	<i>CO</i> 4	Semiconductors						
	<i>CO 1, CO</i>	CO Somioon duotors (i) Estrinsis			-SCL mixed			
	<i>2, CO 3,</i>	Semiconductors.	I) Extrinsic			2X5	2X50 minutes	
	<i>CO</i> 4	Semiconductors.						
		Final exam	ns/ Project Task Re	sults/Case A	analysis Resu	lts		
Learning	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based							
Methods	learning/PBL/other SCL methods							
Student Learning Experience	Learn to study and examine physical systems as well as examples of problem-solving procedures							
Access to Learning Media/ LMS and Offline and Online Percentage	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)							
	Assessment	Assessment	Criteria/	CO1	CO2	CO3	CO4	
	Methods	Percentage	Indicators					
	Participatory							
	Activity*							
	Project Dogulta/ Cogo							
	Kesuits/ Case	/						
Assessment	DRI Resulte*							
Methods and	I DL Acsults							
synchronizatio	Assignment	40		1	1	2	1	
n with CO	Midtorm	70		V	N N	N	N N	
	Exam	30		\checkmark	\checkmark	\checkmark	\checkmark	
	Final Exam	30		\checkmark		\checkmark		
	Total	100						
	*) can also be obtained from the Midterm or Final Exam as the result of participatory activities or project/							
	case study results. According to IKU 7, the percentage of project results/ case study/ PBL results				results is at			
	least 50%.							

References	 Main References; 1. CKittel, Solid State Physic, Edisi 8, 2005 2. R.K. Puri , V.K. Babbar, 1997, Solid State Physic, S. Chand & Company LTD, New Delhi 					
Lecturers (Team Teaching)	 Moh. Adhib Ulil Absor, S.Si., M.Sc., Ph.D Dr Ari Dwi Nugraheni, M.Sc. 					
Authorization	Date of Drafting	Lecturer Coordinator	Head of Curriculum Committee	Head of Study Program		
		Moh. Adhib Ulil Absor, S.Si., M.Sc., Ph.D		Dr. Eng. Ahmad Kusumaatmaja, S.Si., M.Sc.		