SEMESTER LEARNING ACTIVITY PLANS (SLAP) SEMESTER EVEN 2022/2023

Physics Undergraduate Study Program Physics Department Quantum Physics II MFF 2035/ 3 Credits

Lecturer Coordinator:

Drs. Pekik Nurwantoro, M.S., Ph.D Dr. M. F. Rosyid

UNIVERSITAS GADJAH MADA FACULTY OF MATHEMATICS AND NATURAL SCIENCE 2022

Short

Description

Universitas Gadjah Mada

Faculty of Mathematics and Natural Science Physics Department / Physics Undergraduate Study Program Semester EVEN 2022/2023 **Document Number :**

.....

SEMESTER LEARNING ACTIVITY PLANS (SLAP)

Code	Course Name	Credits (Credits)		Semester	Status	Prerequisite		
MFF 2035	Quantum Physics II	<i>T: 3</i>	<i>P:</i>	EVEN	Compulsory	Quantum Physics I (MFF2034)		
	T 1 O			•	6.1 0			

The Quantum Physics II course is a continuation of the Quantum Physics I course, both of which cover the topic or study of Quantum Mechanics. Quantum mechanics is a field of physics that studies physical phenomena on a microscopic scale. Due to such a small system size in the microscopic system, some physical phenomena that occur naturally in it will, at first glance, seem odd according to everyday understanding. The word quantum in terms of Quantum Mechanics is an example of one of the physical phenomena that seems odd, namely the change of several physical quantities from a continuous (malar) state in a macroscopic system to a discrete (quantized) state when in a microscopic system. Looking back on the early developments of quantum mechanics in the early 20th century, Max Planck thoroughly explained the blackbody radiation spectrum when assuming that light consists of quantizing physical quantities in the form of energy packets. Several other physical phenomena can only be explained by observing this type of Max-Planck, including those that occur in the photoelectric and Compton effects. Another odd phenomenon in microscopic systems that is quite popular is the application of Heisenberg's uncertainty principle. In this principle, several pairs of physical quantities are found to be interrelated so that one of the quantities can be measured with certainty or with very high accuracy. As a result, the other pairs of physical quantities cannot be measured with certainty. In macroscopic systems or everyday experience, Heisenberg's uncertainty principle seems irrelevant, considering that the accuracy of measuring one quantity will not depend on another quantity. There are several approaches to studying Ouantum Mechanics. Two approaches commonly used are the approach based on the method of solving differential equations shaped like the wave equation, called the Schrodinger equation, and another approach based on the method of solving matrix algebra. The existence of these two approaches causes Quantum Mechanics to be sometimes called Wave Mechanics or Matrix Mechanics. By solving the Schrodinger equation, two factors of difficulty are commonly encountered when dealing with specific physics problems: (1). The solution to the Schrödinger equation is generally in the form of a complex function, whereas physical quantities should be actual. Thus, in Quantum Mechanics, which is different from Classical Mechanics, a mathematical mechanism or procedure is needed to produce absolute values based on expressions involving complex functions. (2). The involvement of many independent variables, even in many cases the independent variables are coupled with each other, thus requiring the solution of partial differential equations, not ordinary differential equations.

In addition to the difficulty factor in terms of the solution technique above, another difficulty commonly encountered in the process of learning the topic of Quantum Mechanics is the need for a small amount of abstraction to understand a physics problem. This can happen because the phenomena or physics problems being studied are in a realm challenging to imagine, experience, or see directly in everyday experience, namely in the microscopic realm. In contrast, everyday experience or perception is based on the macroscopic realm.

In the Quantum Physics I course, a learning approach based on solving differential equations for the Schrodinger Equation and the presentation of matrices based on Dirac's notation has been taken for several models of simple physics problems. As a continuation, Quantum Physics II addresses some of the more complex physics problems and more realistic models. New problems related to the solution

	method will emerge in coupling between physical quantities, the involvement of many independent variables, and non-standard forms of differential equations. As a result, it is essential to introduce several solving methods, such as operator or algebraic methods and various approximations. To help overcome this difficulty, the process of deepening lecture material is also often added with visual depictions to reduce the difficulty of abstraction in the understanding lecture material. In addition, the learning process of Quantum Physics II is periodically supplemented by giving assignments or homework or assignments to students to improve problem-solving skills and understanding of course material.						
Program Learning Outcomes	PLO 2	modern physics and able to apply basic concepts of physics and related mathematical methods in finding solutions to physical problems.					
(PLO) Imposed on the Course	PLO 5	Long Life Learning. Able to analyze various alternative solutions to physical problems and conclude them for appropriate decision-making, both in familiar and new problems.					
	After comple	eting this course, students are expected	to be able to:				
	<i>CO1</i>	Students have the ability in Physics Ski	lls, namely how to formulate	and describe (to			
Course Outcomes (CO)		describe) the physical phenomena being studied and reveal important information in the physics problem through various tricks or specific mathematical procedures and utilizing various approaches (approximations).					
	<i>CO2</i>	Students have the ability in Analytical Skills, namely how to pay attention to physics					
	СОЗ	problems in detail, analyze problems and build arguments logically and carefully. Students have the ability in Investigative Skills, namely how to search for physics problems from various sources and references to understand important information					
	CO4	Students have the ability in Problem-Solving Skills, namely how to solve a problem with a structured solution (well-defined solutions), to formulate a problem carefully, and try other approaches (approaches) to improve the solution to a challenging problem (challenging problems)					
		Learning Materials	Learning Methods	Time Allocation			
The Correlation of CO to Learning Materials and Methods, and Time Allocation	CO 1	An explanation of the dynamics of quantum systems and the time- dependent Schrodinger equation	TCL-SCL mixed	3X50 minutes			
	CO 1	An explanation of the dynamics of quantum systems and the time- dependent Schrodinger equation	TCL-SCL mixed	3X50 minutes			
	<i>CO 1</i>	An explanation of the dynamics of quantum systems and the time- dependent Schrodinger equation	TCL-SCL mixed	3X50 minutes			
	<i>CO 4</i>	An explanation of the dynamics of quantum systems and the time- dependent Schrodinger equation	TCL-SCL mixed 3X50 min				
	CO 2	Introduction to the concept of orbital and spin angular momentum and the operator properties that represent them, as well as solving eigenvalue problems related to quantum systems	TCL-SCL mixed 3X50 minu				
	CO 4	Introduction to the concept of sum or coupling of angular momentum and spin along with the Clebsch-Gordan coefficient	TCL-SCL mixed	3X50 minutes			

			f a alarin a mharainal	TCI	CCI minud				
	05 50	one examples o	ICL	-SCL IIIXed					
	systems of N-body or identical					27/2			
	pa	rticles involving	g angular			3X5	0 minutes		
	m	momentum coupling (L -S and J -J							
	co	oupling)							
	Midterm exam/Project Task Results/Case Analysis Results								
	Tł	TCL-SCL mixed							
	CO 2 m	ethods (approxi	mations), namely			3X5	0 minutes		
	th	e Variational mo							
	CO 3 In	Introduction of several approximations, namely the time-		TCL	-SCL mixed				
	an					3X5	0 minutes		
	in	dependent Pertu	rbation method						
	CO_2 In	troduction of se	veral	TCI	-SCI mixed				
		provimations n	amely the time.	ICL		385	3Y50 minutes		
	ap in	dependent Dertu	whation mathod			545	3X50 minutes		
		traduction of a		тсі	SCI mired				
	CO4 III	troduction of se		ICL	-SCL IIIXed				
	ap	proximation me	ethods, namely the			3X5			
	W	KB method and	1 its application to						
	th	e solution of mo	blecular systems						
	<i>CO 2</i> In	troduction of th	e Suzuki -Trotter	TCL-SCL mixed					
	m	atrix decomposi	tion method for				3X50 minutes		
	SO	lving some dyn	amics problems in						
	qu	antum systems							
	CO 4 Th	ne use of the Su	zuki - Trotter	TCL	-SCL mixed				
	m	atrix decomposi	tion method for				3X50 minutes		
	so	lving some prol	olems in quantum						
	CO 3 In	troduction to quantum scattering		TCL	-SCL mixed	2V50 minutos			
	an	d Born approxi	mation		5A50 mi		0 minutes		
		Final exams/ Project Task Results/Case Analysis Results							
Learning	SCI (Student Centered Learning): Project-based learning (Team-based Project)/Case based								
Methods	learning/PRL/other SCL methods								
Student	Learn to study and study physical systems								
Learning	Learn to stady and stady physical systems								
Experience									
Access to									
Learning									
Media/ LMS	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google								
and Offline and	Classroom)								
Online)								
Percentage									
Tercentage	Assessment	Assessment	Criteria/						
	Methods	Percentage	Indicators	CO1	CO2	CO3	CO4		
Assessment	Particinatory	1 of contrage							
Mathods and	A etivity*								
Synchronizatio	Drajaat								
synchronizatio	r rujeci Dogulta / Coas								
	Kesults/ Case								
	Study Results/								
	PBL Results*								
1	Cognitive								

	Assignment	40		\checkmark		\checkmark	
	Midterm Exam	30			\checkmark		\checkmark
	Final Exam	30			1		1
	Total	100					
	^{*)} can also be obtained from the Midterm or Final Exam as the result of participatory activities or project/ case study results. According to IKU 7, the percentage of project results/ case study/ PBL results is at least 50%.						
References	 Main References; J. J. Sakurai, J. Napolitano, 2018, Modern Quantum Mechanics, Cambridge University Press, ISBN 9781108499996. Griffiths, D. J., 2018, Introduction to Quantum Mechanics, 3 ed, Cambridge University Press,ISBN-10: 11071896632, ISBN-13: 978-1107189638. 						
Lecturers (Team Teaching)	 Drs. Pekik Nurwantoro, M.S., Ph.D Dr. M. F. Rosyid 						
Authorization	Date of Drafting	Lecturer	Coordinator	Head Curricul Commit	of lum Ho ttee	ead of Study	Program
		Drs. Pekik Nurw	vantoro, M.S., Ph.D		Kus	Dr. Eng. Al sumaatmaja, S	hmad 5.Si., M.Sc.