SEMESTER LEARNING ACTIVITY PLANS (SLAP) SEMESTER ODD 2022/2023

Physics Undergraduate Study Program Physics Department Quantum Physics I MFF 2034/ 3 Credits

Lecturer Coordinator:

Drs. Pekik Nurwantoro, M.S., Ph.D Prof., Agung Bambang Setio Utomo, S.U., Ph.D

UNIVERSITAS GADJAH MADA FACULTY OF MATHEMATICS AND NATURAL SCIENCE 2022

Short

Description

Universitas Gadjah Mada

Faculty of Mathematics and Natural Science Physics Department / Physics Undergraduate Study Program Semester ODD 2022/2023 **Document Number :**

.....

SEMESTER LEARNING ACTIVITY PLANS (SLAP)

Code	Course Name	Credits (Credits)		Semester	Status	Prerequisite	
MFF 2034	Quantum Physics I	<i>T: 3</i>	<i>P</i> :	ODD	Compulsory	Mechanics I (MFF1401)	
	T 1 O		т	• • • • • •	1 , 1 , 1		

The Quantum Physics I course is an introductory course related to the study of Quantum Mechanics in the 2021 Curriculum for the Undergraduate Physics Study Program, FMIPA UGM. Quantum mechanics is a field of physics that studies physical phenomena on a microscopic scale. Due to such a small system size in the microscopic system, some physical phenomena that occur naturally in it will, at first glance, seem odd according to everyday understanding. The word quantum in terms of Quantum Mechanics is an example of one of the physical phenomena that seems odd, namely the change of several physical quantities from a continuous (malar) state in a macroscopic system to a discrete (quantized) state when in a microscopic system. Looking back on the early developments of quantum mechanics in the early 20th century, Max Planck thoroughly explained the blackbody radiation spectrum when assuming that light consists of quantizing physical quantities in the form of energy packets. Several other physical phenomena can only be explained by a similar Max Planck review, including those occurring in the photoelectric and Compton effects.

Another odd phenomenon in microscopic systems that is quite popular is the application of Heisenberg's uncertainty principle. In this principle, several pairs of physical quantities are found to be interrelated in such a way that if one of the quantities can be measured with certainty or with very high accuracy; as a result, the other pairs of physical quantities cannot be measured with certainty. In macroscopic systems or everyday experience, Heisenberg's uncertainty principle seems irrelevant, considering that the accuracy of measuring one quantity will not depend on another quantity. There are several approaches to studying Quantum Mechanics. Two approaches commonly used are the approach is based on solving differential equations in the form of the Wave equation, called the Schrodinger equation, and another approach based on the Matrices Algebraic solution methode by Heisenberg. The existence of these two approaches causes Quantum Mechanics to be sometimes called Wave Mechanics or Matrix Mechanics. Through solving the Schrodinger equation, two factors of difficulty are commonly encountered when dealing with some physical issues, namely: (1). The solution to the Schrodinger equation is generally in the form of a complex function, whereas physical quantities should be accurate. Thus, in Quantum Mechanics, which is different from Classical Mechanics, a mathematical mechanism or procedure is needed that is able to produce absolute values based on expressions involving complex functions. (2). The involvement of many independent variables, even in many cases the independent variables are coupled with each other, thus requiring the solution of partial differential equations, not ordinary differential equations.

In addition to the difficulty factor in terms of the solution technique above, another difficulty commonly encountered in the process of learning the topic of Quantum Mechanics is the need for a small quantity of abstraction to understand a physics problem. This can happen because the phenomena or physical problems studied are in a realm challenging to imagine, experience, or see directly in everyday experience, namely in the microscopic realm. In contrast, everyday experience or perception is based on the macroscopic realm. Various methods of delivering learning related to Quantum Mechanics are commonly used in various Text Books. This is related to the formulation of Quantum Mechanics, which, formally, Mathematics can be done from various approaches (approach). Several approaches in the

	formulation of Quantum Mechanics include solving differential equations or expressions of linear					
	matrix algebra, as well as expressions of functional forms. In the ey					
	In the Quant	he Quantum Physics I lecture, the learning approach was chosen based on the method that most				
	Quantum Me	antum Mechanics Textbooks widely adopt, namely, based on solving the differential equation for the				
	Schrodinger	dinger Equation, along with its matrix representation. With the form of differential equations,				
	schlounger	understanding in solving examples of physical phonomena will be minimal considering that				
	abstract unde	understanding in solving examples of physical phenomena will be minimal, considering that				
	some physica	al quantities still appear explicitly in the Schrödinger equation that represents them. Thus,				
	the Quantum	Physics I course emphasizes that students concentrate more on understanding the physical				
	aspects of ea	ch phenomenon in the microscopic world being studied, not only on understanding the				
	mathematical	aspects of solving procedures. To fulfill this, several simple models of a physical				
	phenomenon	that appear on a microscopic scale will be studied so that students are able to understand				
	various impo	writing aspects that distinguish between guantum phenomena and classical phenomena				
	Ta availate at a	that aspects that distinguish between quantum phenomena and classical phenomena.				
	To assist stud	ients in understanding the procedure for solving the Schrödinger equation, the process of				
	deepening co	urse material is also often added with visual depictions to reduce abstraction difficulties in				
	the understan	ding lecture material. In addition, the learning process of Quantum Physics I is periodically				
	also equipped	d with the provision of assignments or homework or assignments to students to improve				
	problem-solv	ing skills and understanding of lecture material.				
	Learning	g is carried out based on a face-to-face schedule in class for 14 weeks, with each week				
	consisting of	consisting of two meetings of 50 and 100 minutes. Four weeks during the lecture period are used for the				
	Mid-Semeste	r Examination (IJTS) and the Final Semester Examination (IJAS) each of which is carried				
	out on a	scheduled basis for two weaks by the Academic Section of EMIDA LICM				
	Fueluetien f	scheduled basis for two weeks by the Academic Section of FWHFA COW.				
	Evaluation fo	or students for course assessment is carried out summatively and formatively. Summatively,				
	this is manife	s is manifested in the form of written exams, both UTS and UAS, which take a maximum of 120				
	minutes. The	utes. The formative evaluation is realized in the form of independent assignments for each student.				
	The form of	e form of independent activity is the form of completing an assignment given to students to be				
	discussed in	sed in groups and then completed independently at home in the form of a written report for each				
	of these assig	these assignments. The monitoring process is carried out by looking at student activities during the				
	lecture proce	ss such as attendance at lectures questions and answers and discussions on the material				
	being presen	ted and student performance in carrying out independent assignments in the form of				
	bomowork gi	von				
	nomework gr	ven.				
D		Knowledge. Able to explain theoretical concepts and principles of classical and				
Program	PLO 2	modern physics and able to apply basic concepts of physics and related				
Learning		mathematical methods in finding solutions to physical problems.				
Outcomes		Long Life Learning Able to analyze various alternative solutions to physical				
(PLO) Imposed	PLO 5	problems and conclude them for appropriate decision making both in familiar and				
on the Course	1105	problems and conclude them for appropriate decision-making, both in fammar and				
	A fton comple	The problems.				
		Students have the shility in Dhysics Shills, namely how to formulate and describe (to				
	001	structus have the ability in Frights Skins, hallery now to formulate and describe (to				
		describe) the physical phenomena being studied and reveal important information in the				
		physics problem through various tricks or specific mathematical procedures and utilize				
		various approaches (approximations).				
Course	CO2	Students have the ability in Analytical Skills, namely how to pay attention to physics				
Outcomes (CO)		problems in detail, analyze problems and build arguments logically and carefully.				

Students have the ability in Investigative Skills, namely how to search for physics problems from various sources and references to understand important information.

Students have the ability in Problem-Solving Skills, namely how to solve a problem with a structured solution (well-defined solutions), formulate a problem carefully, and try other approaches (approaches) to improve solving a challenging problem (challenging

Outcomes (CO)

CO3

CO4

problems).

		Learning Materials	Learning Methods	Time Allocation		
	CO 1	Background and early development of Quantum Mechanics and the potential role of quantum mechanics in the latest technological developments.	TCL-SCL mixed	3X50 minutes		
	CO 1	Introduction of several new concepts that can explain the experimental results of several physical phenomena regarding aspects of matter and waves	of several new concepts TCL-SCL mixed in the experimental eral physical egarding aspects of aves			
	<i>CO 1</i>	Introduction to the formal aspects of mathematics and the interpretation of several expressions in the formulation of quantum mechanics from the description of differential equations and the correspondence of their matrix expressions through linear algebra.	TCL-SCL mixed	3X50 minutes		
The Correlation of CO to Learning Materials and Methods, and Time Allocation	<i>CO 4</i>	The introduction of several operators representing physical quantities, the Hermitian property, the probability density of finding a particle, the expected value of a physical quantity, the measurement uncertainty of a physical quantity, and the Heisenberg uncertainty concept. A brief introduction to the postulates of quantum theory	TCL-SCL mixed	3X50 minutes		
	CO 2	Infinite well potential system. The description of the one-dimensional bound model for a potential is in the form of a well of infinite depth.	TCL-SCL mixed	3X50 minutes		
	CO 4	Finite well potential system. An explanation of the one-dimensional model for a potential in the form of a well of finite depth.	TCL-SCL mixed	3X50 minutes		
	<i>CO 3</i>	Interpretation of quantum mechanical results. An explanation of the solution of a finite linear well potential system.	TCL-SCL mixed	3X50 minutes		
	Midterm exam/Project Task Results/Case Analysis Results					
	CO 2	The linkage of the potential embankment system with reflection and transmission events. Explanation of the analogy of reflection and transmission events in optics with reflection and breakthrough phenomena of particles in quantum mechanics	TCL-SCL mixed	3X50 minutes		

	<i>CO</i> 2	(continued) Introduction and	TCL SCL mixed		
	05	(continued) introduction and	ICL-SCL IIIXed		
		Oscillator system Explanation of the			
		one dimensional model for a		3X50 minutes	
		parabolic potential with the solution			
		of differential equations			
	<u> </u>	Introduction and completion of	TCL SCL mixed		
	02	Harmonic Oscillator system	ICL-SCL IIIXed		
		Explanation of the one dimensional			
		model for potential in the form of		3X50 minutes	
		parabolic with differential equation			
		solution			
	CO 4	Introduction to the algebraic solution	TCL-SCL mixed		
	001	of the harmonic oscillator and			
		compare it to the results obtained			
		through differential equations.		3X50 minutes	
		Explanation of the emergence of			
		energy quantization and quantum			
		breakthrough			
	<i>CO 2</i>	Introduction and completion of the	TCL-SCL mixed		
		Atomic Hydrogen system.			
		Explanation of the three-dimensional			
		model for the Hydrogen Atom		3X50 minutes	
		Explanation for reducing the			
		reduction from a two-body system to			
		a one-body system.			
	<i>CO</i> 4	Details the steps for solving the	TCL-SCL mixed		
		Schrodinger equation for Hydrogen			
		atoms in the radial variable section.		3X50 minutes	
		An explanation of the steps needed to			
		simplify the solution of partial			
	CO 3	Understanding orbital angular	TCL SCL mixed		
	05	momentum and its relation to the	ICL-SCL IIIXed		
		completion of the Hydrogen stom in			
		the variable angular section An			
		explanation of the emergence of			
		orbital angular momentum operators		3X50 minutes	
		in the Hydrogen atom problem and			
		matters related to the conservation of			
		orbital angular momentum and its			
		quantization.			
	Final exams/ Project Task Results/Case Analysis Results				
Learning	SCL (Studen	t Centered Learning): Project-based l	earning (Team-based Project)/Case-based	
Methods	learning/PBI	L/other SCL methods	·		
Student					
Learning	Learn to analyze and study physical systems				
Experience					

Access to Learning Media/LMS and Offline and Online Percentage	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)						
Assessment	Assessment	Assessment	Criteria/	CO1	CO2	CO3	CO4
	Methods Participatory Activity*	Percentage	Indicators				
	Project Results/ Case Study Results PBL Results*	/					
Synchronizatio	Cognitive						
n with CO	Assignment	40		\checkmark		√	
	Midterm Exam	30			\checkmark		\checkmark
	Final Exam	30			\checkmark		\checkmark
	Total	100					
	[*]) can also be obtained from the Midterm or Final Exam as the result of participatory activities or project/ case study results. According to IKU 7, the percentage of project results/ case study/ PBL results is at least 50%.						
References	 Main References; 1. D. J. Griffiths, 2018, Introduction to Quantum Mechanics 3rd Edition, Cambridge University Press, ISBN-10 : 1107189632, ISBN-13 : 978-1107189638. 2. Schwabl, F., 2007, Quantum Mechanics, 4th ed. Springer-Verlag, Berlin. 						
Lecturers (Team Teaching)	 Drs. Pekik Nurwantoro, M.S., Ph.D Prof., Agung Bambang Setio Utomo, S.U., Ph.D 						
Authorization	Date of Lecturer		Coordinator	Head of Curricul Commit	of lum H tee	Head of Study Program	
		Drs. Pekik Nurw	antoro, M.S., Ph.D		Ku	Dr. Eng. Al sumaatmaja, S	nmad S.Si., M.Sc.