SEMESTER LEARNING ACTIVITY PLANS (SLAP) SEMESTER EVEN 2022/2023

Physics Undergraduate Study Program Physics Department Thermodynamics MFF 1053/ 3 Credits

Lecturer Coordinator:

Prof. Dr. Harsojo, SU., M.Sc. Mirza Satriawan, S.Si., M.Si., Ph.D.

UNIVERSITAS GADJAH MADA FACULTY OF MATHEMATICS AND NATURAL SCIENCE 2022

Universitas Gadjah Mada Faculty of Mathematics and Natural Science Physics Department / Physics Undergraduate Study Program Semester EVEN 2022/2023

Document Number :

.

SEMESTER LEARNING ACTIVITY PLANS (SLAP)

Code	Course Name	Credits (Credits)	Semester	Status	Prerequisite			
MFF 1053	Thermodynamics	<i>T: 3 P:</i>	EVEN	Compulsory	Basic Physics I (MFF1011), Calculus I (MMM1101),			
					Mathematical Physics II (MFF1021)			
Short Description	Thermodynamics is the science of transferring, transforming, and storing energy. Thus, to understand the workings of various tools based on processes involving the transfer, transformation, and storage of energy, it is necessary to master the science of thermodynamics. The science of Thermodynamics is based on experiments. The physical laws in thermodynamics are compiled from observation and experience, so physical quantities, called macroscopic quantities, are generally physical quantities that can be measured. Macroscopic quantities of a thermodynamic system can be related to microscopic quantities, which are the properties or behavior of the atoms or molecules that make up the system, with a branch of science called Statistical Thermodynamics. For students very close to engineering science, thermodynamics that is suitable to be presented is engineering thermodynamics, which analyzes thermodynamics in detail. The prerequisite for this course is the Physics Concept course, with the code MFF1000. Thus, the depth level of this Thermodynamics course, with the code MFF1051, is slightly higher than Basic Physics but does not reach Thermodynamics which contains statistics, because to get to that level, adequate prerequisites for Basic Physics and Calculus are required.							
Program Learning	and principles of classical and of physics and related vsical problems.							
(PLO) Imposed on the Course	mposed CoursePLO 5Long Life Learning. Able to analyze various alternative solutions t problems and conclude them for appropriate decision-making, both and new problems.							
	After completing this course, students are expected to be able to:							
	C01	Students can describe the state of balance of a system and the dynamics of its changes to changes in related variables.						
	<i>CO2</i>	Students can describe typical processes in changing the state of a system (forms: solid, liquid, and gas) in 2D diagrams.						
Course	СО3	Students can use exact and inexact differential equations to solve the problem of changing the system's state.						
Outcomes (CO)	<i>CO4</i>	Students can ap processes and t	udents can apply the Laws of Thermodynamics I in reversible and non-reversible ocesses and their use in thermodynamic machines.					
	<i>C05</i>	Students can ap calculating the machines.	an apply the Laws of Thermodynamics II and the TDS Equation in g the entropy change of the universe and its use in thermodynamic					
	CO6	Students can apply the concept of Thermodynamic Potential (including free energ and enthalpy) and its role in thermodynamic systems.						

		Learning Materials	rning Materials Learning Methods				
		Basic Concepts: (1). System,	TCL-SCL mixed				
	CO 1	environment, boundary.					
		Definitions: Thermodynamic					
		equilibrium: Macroscopic					
		quantities. (2). State of a					
		thermodynamic system		3X50 minutes			
		Processes and cycles Basic					
		principles of temperature, scale,					
		and temperature measurement,					
		Prossure Energy					
	<u> </u>	Pressure, Energy Basia Concente: (1) System	TCL SCL mixed				
	01	anvironment boundaries	TCL-SCL IIIXed				
		Definitions: Thermodynamic					
		equilibrium: Macroscopic					
		quantities. (2). The state of a					
		thermodynamic system		3X50 minutes			
		Processes and cycles Basic					
		principles of temperature, scale,					
		and temperature measurement,					
		Hk. 0th thermodynamics. (3).					
The Correlation		Pressure, Energy					
of CO to	<i>CO</i> 2	Equation of State	TCL-SCL mixed	3X50 minutes			
Learning Materials and	<i>CO</i> 2	Situation Equation	TCL-SCL mixed	3X50 minutes			
	<i>CO 3</i>	(1). Partial Derivative. (2).	TCL-SCL mixed				
Methods, and		Application of Partial					
1 ime Allocation		Derivatives to Thermodynamic		3X50 minutes			
		Systems: Coefficients of Cubic					
		Expansion and Condensation.					
	<u> </u>	(3). Exact differential	TCL SCL mixed				
	004	(1). WOR OF EITOR	TCL-SCL IIIXed				
		Power)					
		(3). Heat / Heat Flow					
		(4). Heat capacity, specific heat		3X50 minutes			
		(5). First Law of					
		Thermodynamics					
		(6). Adiabatic Process					
		(7). Carnot cycle.					
	<i>CO</i> 4	(1). Work or Effort	TCL-SCL mixed				
		(2). Internal Energy (Dakhil					
		Energy)					
		(3). Heat Flow / Heat		3V50 minutos			
		(4). Heat capacity, specific field		JAJU MUNUUUS			
		Thermodynamics					
		(6). Adjabatic Process					
		(7). Carnot Cycle.					
	Midterm exam/Project Task Results/Case Analysis Results						

	<i>CO</i> 5	2nd Law of	Thermodynamics		TCL-SC	CL mixed	t	3X50 m	inutes
	CO 5	Entropy			TCL-SCL mixed		3X50 minutes		
	CO 5	Statements a of Thermody	bout the 2nd Law mamics		TCL-SCL mixed		đ	3X50 minutes	
	CO 5	Thermodyna	mic machines TCL-SCL mixed		t	3X50 minutes			
	CO 6	Helmholtz fu	unction and Gibbs		TCL-SCL mixed		ł	3X50 minutes	
	CO 6	balance and	terms		TCL-SC	CL mixed	t	3X50 minutes	
	CO 6	3rd Law of 7	Thermodynamics		TCL-SC	CL mixe	ł	3X50 m	inutes
		Final exan	Final exams/ Project Task Results/Case Analysis Results						
Learning Methods	SCL (Student Centered Learning): Project-based learning (Team-based Project)/Case-based learning/PBL/other SCL methods								
Student Learning Experience	 (1) Reading and studying texts, mandatory and supporting reading materials. (2) Doing tasks. (3) Participate in class discussion. 								
Access to Learning Media/ LMS and Offline and Online Percentage	Offline (LCD, PPT Slide, Whiteboard, Laptop) and Online (Zoom Meeting, Google Meet, Google Classroom)								
Assessment	Assessment Methods	Assessment Percentage	Criteria/ Indicators	CO1	CO2	CO3	CO4	CO5	CO6
	Participatory Activity*	10		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Project Results/ Case Study Results/ PBL Results*	15		~	V	V	\checkmark	\checkmark	V
Methods and Synchronizatio	Cognitive			I ,	<u> </u>		· · ·		
n with CO	Assignment	10		1	<u>√</u>	√	<u>√</u>	<u></u>	<u>√</u>
	Quiz	10		٦	√	√	√	√	√
	Midterm Exam	25		√	√	√	√	√	√
	Final Exam	30		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Total	100							
	²⁷ can also be obtained from the Midterm or Final Exam as the result of participatory activities or project/ case study results. According to IKU 7, the percentage of project results/ case study/ PBL results is at least 50%.								

References	 Main References; 1. Greiner, W., dkk. 1997, Thermodynamic and Statistical Mechanics, Springer, New York 2. Sears, F.W.,and Salinger, G.L, 1982, Thermodynamics, Kinetic Theory, and Statistical Thermodynamics, Addison-Wesley, Reading, massachussetts 3. Zemansky,M.W., dan Ditman, 1984, Heat and Thermodynamics, McGraw-Hill, New York 4. Dimsiki Hadi, Termodinamika, Diktat LPTK. 				
Lecturers (<i>Team</i> <i>Teaching</i>)	 Prof. Dr. Harsojo, SU., M.Sc. Mirza Satriawan, S.Si., M.Si., Ph.D. 				
Authorization	Date of Drafting	Lecturer Coordinator	Head of Curriculum Committee	Head of Study Program	
		Prof. Dr. Harsojo, SU., M.Sc.		Dr. Eng. Ahmad Kusumaatmaja, S.Si., M.Sc.	